Linear Integral Equations MCQ Quiz in বাংলা - Objective Question with Answer for Linear Integral Equations - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 23, 2025

পাওয়া Linear Integral Equations उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Linear Integral Equations MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Linear Integral Equations MCQ Objective Questions

Top Linear Integral Equations MCQ Objective Questions

Linear Integral Equations Question 1:

Given the homogenous integral equation \(\rm y(x)=\frac{1}{e^2-1} \int_0^1 e^{x+t} y(t)\)dt with degenerate kernel then

  1. Has infinite soltions
  2. Has only trivial solution
  3. Has more than one solution but finite solution
  4. None of these

Answer (Detailed Solution Below)

Option 2 : Has only trivial solution

Linear Integral Equations Question 1 Detailed Solution

Calculations:

\(\rm y(x)=\frac{1}{e^2-1} \int_0^1 e^{x+t} y(t) \)dt

\(\rm y(x)=\frac{e^x}{e^2-1} \int_0^1 e^{t} y(t) \)dt

y(x) = \(\frac{e^x}{e^2-1} c_1\)...(i)

where 

c1 = \(\int_0^1 e^{t} y(t) dt\)

c1 = \(\int_0^1 e^{t}\cdot​​\frac{c_1e^t}{e^2-1} dt\)

c1 = \(\frac{c_1}{e^2-1}[\frac{e^{2t}}{2}]_0^1\)

c1 = \(\frac{c_1}{e^2-1}\cdot\frac{e^{2}-1}{2}\)

c1 = \(\frac{c_1}{2}\)

\(\frac{c_1}{2}\) = 0

c1 = 0

Substituting value of c1 in (i) we get

y = 0

hence given integral equation has only trivial solution.

(2) correct

Linear Integral Equations Question 2:

The integral equation

g(x) y(x) = \(\rm f(x)+\lambda \int_α^β k(x, t) y(t) d t\) with f(x), g(x) and k(x, t) as known functions, α and β as known constants and λ as a known parameter is a

  1. Linear integral equation of Volterra type.
  2. Linear integral equation of Fredholm type
  3. Non-linear integral equation of Volterra type
  4. Non-linear integral equation of Fredholm type.

Answer (Detailed Solution Below)

Option 2 : Linear integral equation of Fredholm type

Linear Integral Equations Question 2 Detailed Solution

Explanation:

g(x) y(x) = \(\rm f(x)+\lambda \int_α^β k(x, t) y(t) d t\) is general form of Fredholm type integral

From the definition of Linear Fredholm integral equation we can say that (2) is correct

Linear Integral Equations Question 3:

The integral equation

\(\phi(x)=1+\frac{2}{\pi}\int_{0}^{\pi}(\cos^{2}\,x)\,\phi(t)d t\)

has 

  1. no solution
  2. unique solution
  3. more than one but finitely many solutions
  4. infinitely many solutions

Answer (Detailed Solution Below)

Option :

Linear Integral Equations Question 3 Detailed Solution

Explanation:

Given integral equation

\(ϕ(x)=1+\frac{2}{π}\int_{0}^{π}(\cos^{2}\,x)\,ϕ(t)d t\)

⇒ \(ϕ(x)=1+\frac{2}{π}(\cos^{2}\,x)\int_{0}^{π}ϕ(t)d t\)...(i)

Let \(\int_0^{π}ϕ(t)dt=c\)....(ii)

then (i) becomes

\(ϕ(x)=1+\frac{2}{π}(\cos^{2}\,x)c\)

So \(ϕ(t)=1+\frac{2c}{π}(\cos^{2}t)\)

Substituting this expression in (ii) we get

\(\int_0^{π}(1+\frac{2c}{π}\cos^2t)dt=c\\\int_0^{π}(1+\frac{c}{π}(1+\cos2t)dt=c\\ [t+\frac{c}{π}(t+\frac{\sin2t}{2}]_0^{π}=c\\ π+c=c\)

⇒ π ≠ 0, which is a contradiction.

Hence integral equation has no solution.

Linear Integral Equations Question 4:

Let ϕ be the solution of

ϕ(x) = 1 − 2x − 4x2 + \(\rm \int^x_0\)[3 + 6(x − t) − 4(x − t)2]ϕ(t)dt.

Then ϕ(1) is equal to

  1. e-1
  2. e-2
  3. e
  4. e2

Answer (Detailed Solution Below)

Option 3 : e

Linear Integral Equations Question 4 Detailed Solution

Concept:

Libnitz integral rule: \(\frac{\partial }{\partial x}\int_{a(x)}^{b(x)}f(x,t)dt =\int_{a(x)}^{b(x)}\frac{\partial f}{\partial x}dt \) + f(b(x), x)\(\frac{db}{dx}\) -  f(a(x), x)\(\frac{da}{dx}\)

Explanation:

ϕ(x) = 1 − 2x − 4x2 + \(\rm \int^x_0\)[3 + 6(x − t) − 4(x − t)2]ϕ(t)dt  ...(i)

Differentiating both side

ϕ'(x) = - 2 − 8x + \(\rm \int^x_0\)[6 − 8(x − t)]ϕ(t)dt + 3ϕ(x) (Using Libnitz integral rule) ...(ii)

Differentiating again we get

⇒ ϕ''(x) = - 8 - 8\(\rm \int^x_0\)ϕ(t)dt + 3ϕ'(x) + 6ϕ(x) (Again using Libnitz rule) ...(iii)

Again differentiating using Libnitz rule

⇒ ϕ'''(x) = - 8ϕ(x) + 3ϕ''(x) + 6ϕ'(x) ....(iv)

⇒ ϕ'''(x) - 3ϕ''(x) - 6ϕ'(x) + 8ϕ(x) = 0....(v)

Now from (i), (ii), (iii), (iv) we get the boundary conditions as

ϕ(0) = 1...(vi)

ϕ'(0) = - 2 + 3ϕ(0) = - 2 + 3 = 1...(vii)

 ϕ''(0) = -8+3+6 =1...(viii) and

ϕ'''(0) = - 8ϕ(0) + 3 ϕ''(0) + 6ϕ'(0) = -8 + 3 + 6 = 1 ...(ix)

Now auxillary equation of (v) is

 m3 - 3m2 - 6m +8 = 0

⇒ (m - 1)(m- 2m - 8) = 0

⇒ (m - 1)(m + 2)(m - 4) = 0

⇒ m = 1, -2, 4

Hence ϕ(x) = ae+ be-2x + ce4x

So ϕ'(x) = ae- 2be-2x + 4ce4x

ϕ''(x) = ae+ 4be-2x + 16ce4x

ϕ'''(x) = ae- 8be-2x + 64ce4x

Using boundary conditions we get

a + b + c = 1

a - 2b + 4c = 1

a + 4b +16c = 1

a - 8b + 64c = 1

Subtracting first two equations we get

3b - 3c = 0⇒ b=c

and subtracting and 3rd equations we get

6b + 12c = 0 ⇒ b + 2c = 0 ⇒ 3c = 0 (as b = c) ⇒ c = 0

Hence b=0

so putting c=b=0 in the first equation we get a=1

Hence solution is

ϕ(x) = e

So ϕ(1) = e

Hence option (3) is correct

Linear Integral Equations Question 5:

For the Fredholm integral equation

\(y(s)=\lambda \int_0^1 e^s e^t y(t) d t\)

Which of the following statements are true?

  1. It has a non-trivial solution satisfying \(\int_0^1 e^t y(t) d t=0\)
  2. Only the trivial solution satisfies \(\int_0^1 e^t y(t) d t=0\)
  3. It has non-trivial solution for all λ ≠ 0
  4. It has non-trivial solutions only if λ = \( \frac{2}{e^2-1}\) and \(\int_0^1 e^t y(t) d t ≠ 0\)

Answer (Detailed Solution Below)

Option :

Linear Integral Equations Question 5 Detailed Solution

Explanation:

\(y(s)=λ \int_0^1 e^s e^t y(t) d t\)

⇒ y(s) = \(λ e^s\int_0^1 e^t y(t) d t\)

⇒ y(s) = \(λ ce^s\) .....(i) where

c = \(\int_0^1 e^t y(t) d t\) 

⇒ c = \(\int_0^1 e^tλ c e^td t\)....(ii)

⇒ c = \(λ c[\frac{e^{2t}}{2}]_0^1\)

⇒ c = \(λ c(\frac{e^2-1}{2})\)

If c ≠ 0 then 

⇒ \(λ (\frac{e^2-1}{2})\) = 1

⇒ λ = \( \frac{2}{e^2-1}\)

So non-trivial solution for \(\int_0^1 e^t y(t) d t\) ≠ 0 and c ≠ 0

Option (4) is correct

and if \(\int_0^1 e^t y(t) d t\) = 0 then by (ii) c = 0

Hence y(x) = 0 trivial solution.

Option (2) is correct

Linear Integral Equations Question 6:

Let K(x, t) = t - x be the kernel of a Volterra integral equation and λ = 1. Then which of the following is the resolvent kernel

  1. cos(t - x)
  2. et-x
  3.  sin(t - x)
  4. cosh(t - x)

Answer (Detailed Solution Below)

Option 3 :  sin(t - x)

Linear Integral Equations Question 6 Detailed Solution

Concept:

Let the Volterra integral equation of 2nd kind be

y(x) = f(x) + λ\(\displaystyle \int_0^x K(x,t)y(t) d t\) where K(x,t) is continuous function on 0 ≤ x ≤ a, 0 ≤ t ≤ x

and f(x) is continuous on 0 ≤ x ≤ a.

then iterative kernel is given by

K1(x, t) = K(x, t)

Kn(x, t) = \(\displaystyle \int_t^x K(x,s)K_{n-1}(s, t)ds\)

and Resolvent kernel is

R(x, t; λ) = \(\sum_{n=1}^{\infty}λ^{n-1}K_{n}(x, t)\)

Explanation:

Given K(x, t) = t - x

K1(x, t) = K(x, t) = t - x

K2(x, t) = \(\displaystyle \int_t^x (s-x)(t-s)ds\)

           = \(\displaystyle \int_t^x (st-xt-s^2+xs)ds\)

          = \(\left[{s^2t\over 2}-xts-{s^3\over 3}+{xs^2\over 2}\right]_t^x\)

          = \(\left[{x^2t\over 2}-x^2t-{x^3\over 3}+{x^3\over 2}\right]-\left[{t^3\over 2}-xt^2-{t^3\over 3}+{xt^2\over 2}\right]\)

        = \(\left[-{x^2t\over 2}+{x^3\over 6}\right]-\left[{t^3\over 6}-{xt^2\over 2}\right]\)

       = \(x^3-t^3-3x^2t+3xt^2\over6\)

       = \(-{(t-x)^3\over 3!}\)

Similarly we get

K3(x, t) = \({(t-x)^5\over 5!}\) 

Continuing this process we get

Kn(x, t) = \({(-1)^n(t-x)^{2n+1}\over (2n+1)!}\)

So, Resolvent kernel is

R(x, t; 1) = \(\sum_{n=1}^{\infty}1^{n-1}.{(-1)^n(t-x)^{2n+1}\over (2n+1)!}\) = sin(t - x)

Option (3) is true

Linear Integral Equations Question 7:

The kernel corresponding to the boundary value problem 

y''(x) + λy(x) = x with y(0) = 0 and y'(1) = 0 is

  1. k(x, t) = \(\begin{cases}t, x>t\\x, x
  2. k(x, t) = \(\begin{cases}x, x>t\\t, x
  3. k(x, t) = \(\begin{cases}\frac xt, x>t\\\frac tx, x
  4. k(x, t) = xt

Answer (Detailed Solution Below)

Option 1 : k(x, t) = \(\begin{cases}t, x>t\\x, x

Linear Integral Equations Question 7 Detailed Solution

Explanation:

y''(x) + λy(x) = x with y(0) = 0 and y'(1) = 0

y''(x) = x - λy(x)

Integrating both sides from 0 to x

y'(x) - y'(0) = \(x^2\over 2\) - λ\(\int_0^xy(t)dt\)

y'(x) = c + \(x^2\over 2\) - λ\(\int_0^xy(t)dt\) ....(i) where c = y'(0)

Again integrating from 0 to x 

y(x) - y(0) = cx + \({x^3\over 6}-\lambda\int_0^x\int_0^xy(t)dt\)

y(x) - 0 = cx + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

y(x) = cx + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

Using 

y'(1) = 0 in (1) we get

0 = c + \(\frac12-\lambda\int_0^1y(t)dt\)

c = \(-\frac12+\lambda\int_0^1y(t)dt\)

Hence

y(x) = \(-\frac x2+\lambda\int_0^1xy(t)dt\) + \({x^3\over 6}-\lambda\int_0^x(x-t)y(t)dt\)

y(x) = \(\frac16(x^3-3x)+\lambda[\int_0^xxy(t)dt+\int_x^1 xy(t)dt-\int_0^x(x-t)y(t)dt]\)

y(x) = \(\frac16(x^3-3x)+\lambda[\int_0^xty(t)dt+\int_x^1 xy(t)dt]\)

y(x) = \(\frac16(x^3-3x)+\lambda\int_0^1k(x,t)y(t)dt\)

where k(x, t) = \(\begin{cases}t, x>t\\x, x

Option (1) is true.

Linear Integral Equations Question 8:

The value of λ for which the integral equation 

\(y(x)=\lambda \displaystyle \int_0^1 x e^{x+2t} y(t) d t\)

has a non-zero solution, is

  1. \(\frac{7}{2e^2+1}\)
  2. \(\frac{9}{2e^3+1}\)
  3. \(\frac{4}{e^3+1}\)
  4. \(\frac{1}{3e^2+1}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{9}{2e^3+1}\)

Linear Integral Equations Question 8 Detailed Solution

Explanation:

\(y(x)=\lambda \displaystyle \int_0^1 x e^{x+2t} y(t) d t\)

⇒ \(y(x)=λ x e^{x}\displaystyle \int_0^1 e^{2t} y(t) d t\)

⇒ y(x) = λxexc....(i)

where c = \(\displaystyle \int_0^1 e^{2t} y(t) d t\)....(ii) 

Putting the expression of y(x) from (i) in (ii) we get

c = \(\displaystyle \int_0^1 e^{t} λ te^{2t}c\, d t\)

⇒ c = λc\(\displaystyle \int_0^1 te^{3t}\, d t\)

⇒ c = λc \(\left\{\left[ t{e^{3t}\over 3}\right]_0^1-\displaystyle \int_0^1{e^{3t}\over3}\, dt\right\}\)

⇒ c = λc \(\left\{{e^{3}\over 3}-\left[{ e^{3t}\over 9}\right]_0^1\right\}\)

⇒ c = λc\(\left\{{e^{3}\over 3}-{{e^3-1}\over 9}\right\}\)

⇒ c = λc\(2e^{3}+1\over9\)

⇒ 1 = λ\(2e^{3}+1\over9\) (since c ≠ 0)

⇒ λ = \(\frac{9}{2e^3+1}\)

(2) is correct

Linear Integral Equations Question 9:

for λ ∈ ℝ such that |λ| < \(\frac{5}{32}\), let R(x, t, λ) and u denote the resolvent kernel and the solution, respectively, of the Fredholm integral equation 

\(\rm u(x)=x+\frac{\lambda}{2}\int_{-2}^2(xt+x^2t^2)u(t)dt\)

Then which of the following statements are true?  

  1. \(\rm R(x, t, \lambda )=\frac{3xt}{3-8\lambda}-\frac{5x^2t^2}{5-32\lambda}\)
  2. \(\rm R(x, t, \lambda )=\frac{3xt}{3-8\lambda}+\frac{5x^2t^2}{5-32\lambda}\)
  3. \(\rm u(1)=-\frac{5}{5-32\lambda}\)
  4. \(\rm u(1)=\frac{3}{3-8\lambda}\)

Answer (Detailed Solution Below)

Option :

Linear Integral Equations Question 9 Detailed Solution

Concept:

The resolvent kernel, denoted as \(R(x,t,\lambda) \)R(x,t,λ) R(x, t, \lambda)" id="MathJax-Element-26-Frame" role="presentation" style="position: relative;" tabindex="0">R(x,t,λ) R(x, t, \lambda)" id="MathJax-Element-38-Frame" role="presentation" style="position: relative;" tabindex="0">R(x,t,λ) R(x, t, \lambda)" id="MathJax-Element-55-Frame" role="presentation" style="position: relative;" tabindex="0">R(x,t,λ)Unknown node type: spanUnknown node type: span" id="MathJax-Element-86-Frame" role="presentation" style="position: relative;" tabindex="0">R(x,t,λ)Unknown node type: spanUnknown node type: span" id="MathJax-Element-161-Frame" role="presentation" style="position: relative;" tabindex="0">R(x,t,λ)Unknown node type: spanUnknown node type: span K(x,t) K(x, t)" id="MathJax-Element-27-Frame" role="presentation" style="position: relative;" tabindex="0">K(x,t) K(x, t)" id="MathJax-Element-39-Frame" role="presentation" style="position: relative;" tabindex="0">K(x,t) K(x, t)" id="MathJax-Element-56-Frame" role="presentation" style="position: relative;" tabindex="0">K(x,t) K(x, t)" id="MathJax-Element-87-Frame" role="presentation" style="position: relative;" tabindex="0">K(x,t) K(x, t)" id="MathJax-Element-162-Frame" role="presentation" style="position: relative;" tabindex="0">K(x,t) K(x, t) .

For second-kind Fredholm integral equations, the resolvent kernel helps us express the solution in terms of a known series. 

Explanation:

The Fredholm integral equation is

\(u(x) = x + \frac{\lambda}{2} \int_{-2}^{2} \left( xt + x^2t^2 \right) u(t) \, dt\)

We are also given that \(R(x, t, \lambda)\) is the resolvent kernel, and \(\lambda \in \mathbb{R} \) with \(|\lambda| < \frac{5}{32}\) .

 The function \(u(x)\) is a combination of a known term \(x \), and an integral term that depends on \(\lambda\), \(x \) and \(u(t)\) .

The integral term \(\int_{-2}^{2} \left( xt + x^2 t^2 \right) u(t) dt \) involves multiplying \(u(t)\) by a kernel function \((xt + x^2 t^2)\) 

and then integrating over  t  from -2 to  2.

\(\int_{-2}^{2} \left( xt + x^2 t^2 \right) u(t) \, dt = x \int_{-2}^{2} t u(t) \, dt + x^2 \int_{-2}^{2} t^2 u(t) \, dt\)

Given that the non-integral part of \(u(x)\) is a polynomial in \(x \) , we can try to assume that the

solution \(u(t)\) is also a polynomial, say,

\(u(t) = a_0 + a_1 t + a_2 t^2\)
 

Substituting this assumed solution for \\(u(t)\) into the integral expressions, we can compute the

integrals separately \( \int_{-2}^{2} t u(t) \, dt \)

 

Substitute \(u(t) = a_0 + a_1 t + a_2 t^2 \):

\(\int_{-2}^{2} t \left( a_0 + a_1 t + a_2 t^2 \right) dt = a_0 \int_{-2}^{2} t dt + a_1 \int_{-2}^{2} t^2 dt + a_2 \int_{-2}^{2} t^3 dt\)

Using standard integrals,  \(\int_{-2}^{2} t dt = 0, \quad \int_{-2}^{2} t^2 dt = \frac{16}{3}, \quad \int_{-2}^{2} t^3 dt = 0\)

Thus, \(\int_{-2}^{2} t u(t) \, dt = a_1 \cdot \frac{16}{3}\)

and  \(\int_{-2}^{2} t^2 u(t) \, dt\) 

Substitute, \(u(t) = a_0 + a_1 t + a_2 t^2\)

\(\int_{-2}^{2} t^2 \left( a_0 + a_1 t + a_2 t^2 \right) dt = a_0 \int_{-2}^{2} t^2 dt + a_1 \int_{-2}^{2} t^3 dt + a_2 \int_{-2}^{2} t^4 dt\)

Using standard integrals \(\int_{-2}^{2} t^2 dt = \frac{16}{3}, \quad \int_{-2}^{2} t^3 dt = 0, \quad \int_{-2}^{2} t^4 dt = \frac{64}{5}\)

Thus, \(\int_{-2}^{2} t^2 u(t) \, dt = a_0 \cdot \frac{16}{3} + a_2 \cdot \frac{64}{5}\)
 

\(u(x) = x + \frac{\lambda}{2} \left( x \cdot \frac{16}{3} \cdot a_1 + x^2 \cdot \left( a_0 \cdot \frac{16}{3} + a_2 \cdot \frac{64}{5} \right) \right)\)

Now, equate the powers of \( x \) on both sides and solve for the constants \(a_0, a_1, a_2 \).

After solving for \(a_0, a_1, a_2 \), you can evaluate the expression for \(u(x) \), particularly at \(x = 1 \) to determine \(u(1)\).

For the resolvent kernel \(R(x,t,\lambda) \), it should be determined based on the integral operator

and the values of \( \lambda \) that satisfy the equation.

Thus, Option 2) and Option 4) are correct.

 

Linear Integral Equations Question 10:

The integral equation \(y(x)=λ \int_{0}^{1}(4 x^2-3x) \operatorname{ty}(t) d t\), with λ as a parameter, has

  1. only one characteristic number
  2. two characteristic numbers
  3. no characteristic number
  4. more than two characteristic numbers

Answer (Detailed Solution Below)

Option 3 : no characteristic number

Linear Integral Equations Question 10 Detailed Solution

Explanation:

\(y(x)=λ \int_{0}^{1}(4 x^2-3x) \operatorname{ty}(t) d t\)

⇒ \(y(x)=λ \int_{0}^{1}(4 x^2-3x) \operatorname{ty}(t) d t\)

⇒ \(y(x)=λ (4 x^2-3x)\int_{0}^{1} t y(t) d t\)....(i)

⇒ y(x) = λ(4x2 - 3x)c ....(ii) where

c = \(\int_0^1ty(t)dt\)....(iii)

Putting the expression of ϕ(t) from (ii) in (iii) we get

c = \(\int_0^1λ c(4t^2-3t)tdt\)

⇒ c = λc \([t^4-t^3]_0^1\)

⇒ c = λc × 0

⇒ c = 0

Hence in (ii) putting c = 0, we get

y(x) = 0

Therefore we are getting trivial solution

Hence the homogeneous integral equation has no characteristic number

(3) is correct

Get Free Access Now
Hot Links: teen patti gold downloadable content teen patti casino download teen patti master plus teen patti - 3patti cards game teen patti master king