Let T : R2 - R3 be the linear transformation whose matrix with respect to standard basis {e1, e2, e3) of R3 is \(\begin{bmatrix} 0 & 0 & 1 \\\ 0 & 1 & 0 \\\ 1 & 0 & 0 \end{bmatrix}\) then T

  1. maps the subspace spanned by e1 and e2 into itself
  2. has distinct eigenvalues
  3. has eigenvectors that span R3
  4. has a non-zero null space

Answer (Detailed Solution Below)

Option 3 : has eigenvectors that span R3
Free
DSSSB TGT Social Science Full Test 1
7.7 K Users
200 Questions 200 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

Linear transformation: The Linear transformation T : V → W is that for any vectors v1 and v2 in V and scalars a and b of the underlying field, it satisfies following condition

T(av1 + bv2) = a T(v1) + b T(v2).

Calculations:

T = \(\begin{bmatrix} 0 & 0 & 1 \\\ 0 & 1 & 0 \\\ 1 & 0 & 0 \end{bmatrix}\)

| T - λI | = 0

⇒ \(\begin{bmatrix} -\lambda & 0 & 1 \\\ 0 & 1-\lambda & 0 \\\ 1 & 0 & -\lambda\end{bmatrix}=0\) 

⇒ λ2(1 - λ) + 1(λ - 1) = 0

⇒ (λ - 1)(1 - λ2) = 0

⇒ λ = 1, 1, -1.

⇒ T has only zero null space.

| T - I | = 0

⇒ \(\begin{bmatrix} -1 & 0 & 1 \\\ 0 & 0 & 0 \\\ 1 & 0 & -1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\) 

⇒ - x + z = 0

Then the eigen vector [0, 1, 0] & [1, 0, 1]

| T+ I | = 0

⇒ \(\begin{bmatrix} 1 & 0 & 1 \\\ 0 & 2 & 0 \\\ 1 & 0 & 1 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)

⇒ x + z = 0 and y = 0

⇒ Then the eigen vector [1, 0, -1].

Clearly all are independent.

Hence it spans R3.

Hence, the correct answer is option 3)

Latest DSSSB TGT Updates

Last updated on May 12, 2025

-> The DSSSB TGT 2025 Notification will be released soon. 

-> The selection of the DSSSB TGT is based on the CBT Test which will be held for 200 marks.

-> Candidates can check the DSSSB TGT Previous Year Papers which helps in preparation. Candidates can also check the DSSSB Test Series

More Vector Spaces Questions

More Matrices Questions

Get Free Access Now
Hot Links: teen patti star login teen patti master king teen patti real money app