If the Bessel function of integer order n is defined as Jn(x)=k=0(1)kk!(n+k)!(x2)2k+n then ddx[xnJn(x)] is 

  1. x[n+1]Jn+1(x)
  2. x[n+1]Jn1(x)
  3. xnJn1(x)
  4. xnJn+1(x)

Answer (Detailed Solution Below)

Option 4 : xnJn+1(x)

Detailed Solution

Download Solution PDF

Explanation:

  • The recurrence relation is: (n)Jn(x)xJn(x)=xJn1(x)
  • Rearranging and multiplying the relation by xn, we get: xnJn(x)=x(n1)Jn1(x)xn(n)Jn(x),
  • Which simplifies to: xnJn(x)=xn(Jn1(x)nJn(x))
  • But another recurrence relation involves Bessel functions, which is Jn1(x)+Jn+1(x)=2nJn(x)/x,
  • From above we can replace (Jn1(x)=x[Jn+1(x)2nJn(x)/x]) in our expression for xnJn(x)
  • This results in: xnJn(x)=xn(x[Jn+1(x)2nJn(x)/x]nJn(x))
  • After simplifying, it becomes: xnJn(x)=xnJn+1(x)
  • Solving for the derivative of interest, we get: [ddx[xnJn(x)]=xnJn+1(x)]

More Mathematical Methods of Physics Questions

Get Free Access Now
Hot Links: happy teen patti teen patti circle teen patti download apk teen patti rules teen patti master plus