Question
Download Solution PDFIf the 2 lines \(\rm {x -1\over 2}={y+1\over3}={z\over-1}\) and \(\rm {x+2\over 1}={y-1\overλ}={z-2\over2}\) are coplanar, then λ = ?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
If the 2 lines \(\rm {x -x_1\over a}={y-y_1\over b}={z-z_1\over c}\) and \(\rm {x -x_2\over p}={y-y_2\over q}={z-z_2\over r}\) are coplanar, then
\(\begin{vmatrix} x_2-x_1& y_2-y_1 & z_2-z_1\\ a& b &c \\ p& q &r \end{vmatrix} = 0\)
Calculation:
Given equations of the coplanar lines are
\(\rm {x -1\over 2}={y+1\over3}={z\over-1}\) and \(\rm {x+2\over 1}={y-1\overλ}={z-2\over2}\)
x1 = 1, y1 = - 1, z1 = 0 and x2 = - 2, y2 = 1, z2 = 2
∵ The lines are coplanar so,
\(\begin{vmatrix} x_2-x_1&y_2-y_1& z_2-z_1\\ 2& 3 &-1 \\ 1&λ &2 \end{vmatrix} = 0\)
\(\begin{vmatrix} -2-1& 1-(-1)& 2-0\\ 2& 3 &-1 \\ 1&λ &2 \end{vmatrix} = 0\)
\(\begin{vmatrix} -2-1& 1+1& 2-0\\ 2& 3 &-1 \\ 1&λ &2 \end{vmatrix} = 0\)
\(\begin{vmatrix} -3& 2& 2\\ 2& 3 &-1 \\ 1&λ &2 \end{vmatrix} = 0\)
-3(6 + λ) - 2(4 + 1) + 2(2λ - 3) = 0
λ - 34 = 0
λ = 34
Last updated on Jun 20, 2025
-> The Indian Navy SSR Agniveeer Merit List has been released on the official website.
-> The Indian Navy Agniveer SSR CBT Exam was conducted from 25th to 26th May 2025.
->The application window was open from 29th March 2025 to 16th April 2025.
-> The Indian Navy SSR Agniveer Application Link is active on the official website of the Indian Navy.
.->Only unmarried males and females can apply for Indian Navy SSR Recruitment 2025.
-> The selection process includes a Computer Based Test, Written Exam, Physical Fitness Test (PFT), and Medical Examination.
->Candidates Qualified in 10+2 with Mathematics & Physics from a recognized Board with a minimum 50% marks in aggregate can apply for the vacancy.
-> With a salary of Rs. 30,000, it is a golden opportunity for defence job seekers.
-> Candidates must go through the Indian Navy SSR Agniveer Previous Year Papers and Agniveer Navy SSR mock tests to practice a variety of questions for the exam.