Question
Download Solution PDFIf ω is a non-real cube root of unity, then what is a root of the following equation?\( \begin{vmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{vmatrix} = 0 \)
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFCalculation:
Given,
Let ω be a non-real cube root of unity, so \( \omega^{3}=1 \) and \( 1+\omega+\omega^{2}=0 \).
Consider the determinant
\( \Delta(x)= \begin{vmatrix} x+1 & \omega & \omega^{2}\\ \omega & x+\omega^{2} & 1\\ \omega^{2} & 1 & x+\omega \end{vmatrix}=0. \)
Step 1 — Column operation: Replace the first column by \(C_{1}-C_{2}\):
\( \Delta(x)= \begin{vmatrix} x^{2}-1 & \,2\!k\!+\!1\, & 1\\ k-1 & k+2 & 1\\ 0 & 3 & 1 \end{vmatrix}. \)
Step 2 — Expansion along the third row:
\( \Delta(x)= -3\! \begin{vmatrix} k^{2}-1 & 1\\ k-1 & 1 \end{vmatrix} + \begin{vmatrix} k^{2}-1 & 2k+1\\ k-1 & k+2 \end{vmatrix}, \)
which simplifies to
\( \Delta(x)=x(x^{2}-1)-x\bigl(\omega+\omega^{2}\bigr) =x(x^{2}-1)+x =x^{3}. \)
Step 3 — Equate to zero:
\( \Delta(x)=0 \;\Longrightarrow\; x^{3}=0 \;\Longrightarrow\; x=0. \)
∴ The root of the equation is \( x = 0 \).
Hence, the correct answer is Option 1.
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.