Question
Download Solution PDFवृत x2 + y2 = 9 पर बिंदु (4, 0) से स्पर्शक की लम्बाई क्या होगी?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
बाह्य बिंदु (x1, y1) से वृत x2 + y2 = a2 के स्पर्शक की लम्बाई \(\sqrt {x_1^2 + y_1^2 - {a^2}}\) होगी
गणना:
दिया गया है: वृत की समीकरण x2 + y2 = 9 और बिंदु (4, 0).
जैसा की हम जानते है बाह्य बिंदु (x1, y1) से वृत x2 + y2 = a2 के स्पर्शक की लम्बाई \(\sqrt {x_1^2 + y_1^2 - {a^2}}\) होगी
यहाँ , x1 = 4 , y1 = 0 और a2 = 9.
इसलिए स्पर्शक की लम्बाई √7 इकाई हैLast updated on Jun 11, 2025
-> The Indian Army has released the official notification for the post of Indian Army Havildar SAC (Surveyor Automated Cartographer).
-> Interested candidates had applied online from 13th March to 25th April 2025.
-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.
-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail.