Question
Download Solution PDFश्रेणी \(\left( {\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n - 1}}}}}}{{{\rm{n}}\left( {{{\rm{3}}^{\rm{n}}}} \right)}}} } \right)\) के लिए सत्य कथन है:
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFप्रयुक्त अवधारणा:
अनुपात परीक्षण:
माना \( L=\lim _{n \rightarrow ∞} \frac{\left|a_{n+1}\right|}{\left|a_n\right|}\)
- यदि L < 1, तो \(\sum a_n\) पूर्णतया अभिसरण करता है।
- यदि L > 1, या सीमा ∞ तक जाती है, तो \(\sum a_n\) विचलन करता है।
- यदि L = 1 या यदि L मौजूद नहीं है, तो परीक्षण विफल हो जाता है, और हम कुछ भी नहीं जानते हैं।
गणना:
\( \left( {\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{{{\rm{x}}^{{\rm{n - 1}}}}}}{{{\rm{n}}\left( {{{\rm{3}}^{\rm{n}}}} \right)}}} } \right) \) = \( \left( {\sum_{n=0}^\infty a_n} \right) \)
\( a_n=\frac{x^{n-1}}{n(3^n)}\) और \( a_{n+1}=\frac{x^{n}}{(n+1)3^{n+1}}\)
⇒ \(L=\lim_{n\to \infty}\frac{\frac{x^{n}}{(n+1)3^{n+1}}}{\frac{x^{n-1}}{n(3^n)}}\)
⇒ \(L=\lim_{n\to \infty} \frac{x}{3} \cdot \frac{n}{n+1}\)
⇒ \( L=\lim_{n\to \infty} \frac{x}{3} \cdot \left(1-\frac{1}{n+1}\right) \)
⇒ \(L=\frac{x}{3}\)
अभिसरण के लिए, \( \frac{x}{3} <1\)
⇒ x < 3
Last updated on Jul 17, 2025
-> The latest RPSC Senior Teacher Notification 2025 notification has been released on 17th July 2025
-> A total of 6500 vacancies have been declared.
-> The applications can be submitted online between 19th August and 17th September 2025.
-> The written examination for RPSC Senior Teacher Grade 2 Recruitment (Secondary Ed. Dept.) will be communicated soon.
->The subjects for which the vacancies have been released are: Hindi, English, Sanskrit, Mathematics, Social Science, Urdu, Punjabi, Sindhi, Gujarati.