Question
Download Solution PDFवक्र x3 + y2 + 3y + x = 0 और बिंदु (2, -1) से होकर गुजरने वाली स्पर्श रेखा का समीकरण क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
वक्र के लिए स्पर्श रेखा का समीकरण ज्ञात करने के चरण:
f(x) का पहला अवकलज ज्ञात कीजिए।
स्पर्श रेखा का समीकरण ज्ञात करने के लिए बिंदु-ढलान सूत्र का प्रयोग कीजिए।
बिंदु-ढलान सामान्य रूप है: y - y₁=m(x - x₁), जहाँ m = स्पर्श रेखा की ढलान = \(\rm \frac {dy}{dx}\)
गणना:
दिया गया वक्र है: x3 + y2 + 3y + x = 0
x के सापेक्ष अवकलन करने पर,
3x2 + 2y\(\rm dy\over dx\) + 3\(\rm dy\over dx\) + 1 = 0
(2y + 3)\(\rm dy\over dx\) = -3x2 - 1
\(\rm dy\over dx\) = \(\rm -{3x^2+1\over2y+3}\)
(2, -1) पर
\(\rm dy\over dx\) = \(\rm -{3(2)^2+1\over2(-1)+3}\)
\(\rm dy\over dx\) = \(-{12+1\over 1}\) = -13
स्पर्श रेखा का समीकरण निम्नलिखित है:
(y - (-1)) = -13(x - 2)
y + 1 = -13x + 26
y + 13x - 25 = 0
Last updated on Jun 18, 2025
->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.