निश्चित बिंदु (0, 0, 1) और (0, 0, -1) से निर्देशांक x, y, z वाले चर बिंदु P की दूरी को क्रमशः u और v द्वारा निरूपित किया जाता है। नया चर ξ, η, ϕ को  \(ξ = \frac{1}{2}(u+v), η = \frac{1}{2}(u-v)\)  द्वारा परिभाषित किया गया है और, ϕ समतल y = 0 और तीन बिंदुओं वाले समतल  \(ϕ = \tan^{-1}\left(\frac{y}{x}\right)\), 1 ≤ ξ < ∞, -1 ≤ η < 1, 0 ≤ ϕ < 2π के बीच का कोण है, तब जैकोबियन  \(\frac{\partial (\xi, \eta, \phi)}{\partial (x, y, z)}\) का मान 1 है तब,  \(\int\int\int_{all\:space}\frac{u-v)^2}{uv}\:exp\left(-\frac{u+v}{2}\right)dxdydz=\)?

This question was previously asked in
UPSC IES Electrical 2022 Prelims Official Paper
View all UPSC IES Papers >
  1. \(\frac{16\pi}{e}\)
  2. \(\frac{8\pi}{3e}\)
  3. \(\frac{16\pi}{3e}\)
  4. \(\frac{8\pi}{e}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{16\pi}{3e}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.3 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\frac{\partial (\xi, \eta, \phi)}{\partial (x, y, z)}\times \frac{\partial (x, y, z)}{\partial (\xi, \eta, \phi)}=1\)

\({1\over ζ^2-\eta^2}\times \frac{\partial (x, y, z)}{\partial (\xi, \eta, \phi)}=1\)

\( \frac{\partial (x, y, z)}{\partial (\xi, \eta, \phi)}=ζ^2-\eta^2\) .............(i)

गणना:

दिया गया है, \(ξ = \frac{1}{2}(u+v)\)

 \(u+v=2ξ\)...........(ii)

\(η = \frac{1}{2}(u-v)\)

\( u-v=2η\) ............(iii)

(ii) और (iii) को हल करने पर, हमें प्राप्त होता है:

\(u=ξ+\eta\) और \(v=ξ-\eta\)

\(J= \frac{\partial (x, y, z)}{\partial (\xi, \eta, \phi)}=ζ^2-\eta^2=uv\) .......(iv)

समीकरणों (ii), (iii), और (iv) का मान रखने पर, हमें यह प्राप्त होता है:

\(=\int\int\int\frac{(u-v)^2}{uv}\:e^\left(-\frac{u+v}{2}\right)dx\space dy\space dz\)

\(=\int_{\zeta=1}^{\infty}\int_{\eta=-1}^{1}\int_{\phi=0}^{2\pi}4\eta^2 d\zeta \space d\eta \space d\phi\)

\(=\frac{16\pi}{3e}\)

Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Partial Differential Equations Questions

More Differential Equations Questions

Get Free Access Now
Hot Links: teen patti game online teen patti royal - 3 patti teen patti real cash game teen patti - 3patti cards game downloadable content