Find the value of \(\,\,\,\begin{array}{*{20}{c}} {\lim }\\ {\left( {x,y} \right) \to \left( {0,0} \right)} \end{array}\frac{{121.{x^{ - 5}}.{y^{\frac{{13}}{3}}}}}{{y + {{\left( x \right)}^{\frac{3}{2}}}}}\)

This question was previously asked in
BPSC Assistant Professor Mechanical 2022 Official Paper
View all BPSC Assistant Professor Papers >
  1. \(\infty \)
  2. 0
  3. Does not exist
  4. 121

Answer (Detailed Solution Below)

Option 3 : Does not exist

Detailed Solution

Download Solution PDF

Concept:

The Squeeze Theorem (The Sandwich Theorem): is used on a function where it will be almost impossible to differentiate.
  • The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if \(\rm \displaystyle \lim_{x \to a}h(x) = \lim_{x \to a}g(x) = L\), then \(\rm \displaystyle \lim_{x \to a}f(x) = L\).

Calculation:

Given:

\(\,\,\,\begin{array}{*{20}{c}} {\lim }\\ {\left( {x,y} \right) \to \left( {0,0} \right)} \end{array}\frac{{121.{x^{ - 5}}.{y^{\frac{{13}}{3}}}}}{{y + {{\left( x \right)}^{\frac{3}{2}}}}}\)

Consider approaching (0, 0) along x-axis. This means fixing y = 0 and find:

\(\mathop {\lim }\limits_{x \to 0 } ~\frac{121x^{-5}~\times~y^{\frac{13}{5}}}{y~+~x^{\frac{3}{2}}}\)

∴ \(\mathop {\lim }\limits_{{{x \to 0}}\ {y~=~0}}~\frac{121x^{-5}~\times~y^{\frac{13}{3}}}{y~+~x^{\frac{3}{2}}}~=~\frac{0}{0~+~x^{\frac{3}{2}}}~=~0\) ............................ (1)

Consider approaching (0, 0) along y-axis. This means fixing x = 0 and finding:

\(\mathop {\lim }\limits_{y \to 0 } ~\frac{121x^{-5}~\times~y^{\frac{13}{3}}}{y~+~x^{\frac{3}{2}}}\)

\(\mathop {\lim }\limits_{{{y \to 0}}\ {x~=~0}}~\frac{121x^{-5}~\times~y^{\frac{13}{3}}}{y~+~x^{\frac{3}{2}}}~=~\frac{0}{y~+~0}~=~0\) ..................................(2)

Now considering a path: y = \(x^{\frac{3}{2}}\)

\(\mathop {\lim }\limits_{{{x \to 0}}\ {y~=~x^{\frac{3}{2}}~{ \to 0}}}~\frac{121x^{-5}~\times~{(x^{\frac{3}{2}})}^{\frac{13}{3}}}{x^{\frac{3}{2}}~+~x^{\frac{3}{2}}}\)

⇒ \(\mathop {\lim }\limits_{{{x \to 0}}\ {y~=~x^{\frac{3}{2}}~{ \to 0}}}~\frac{121x^{-5~+~\frac{13}{2}}}{2~\times~x^{\frac{3}{2}}}\)

⇒ \(\mathop {\lim }\limits_{{{x \to 0}}\ {y~=~x^{\frac{3}{2}}~{ \to 0}}}~\frac{121x^{\frac{3}{2}}}{2~\times~x^{\frac{3}{2}}}~=~\frac{121}{2}\) ........................................(3)

So, From (1), (2) and (3), Limits along different paths are different, So, the limit does not exist

Latest BPSC Assistant Professor Updates

Last updated on May 9, 2025

-> The BPSC Assistant Professor last date to apply online has been extended to 15th May 2025 (Advt. No. 04/2025 to 28/2025).

-> The BPSC Assistant Professor Notification 2025 has been released for 1711 vacancies under Speciality (Advt. No.04/2025 to 28/2025).

-> The recruitment is ongoing for 220 vacancies (Advt. No. 01/2024 to 17/2024).

-> The salary under BPSC Assistant Professor Recruitment is approximately Rs 15600-39100 as per Pay Matrix Level 11. 

-> The selection is based on the evaluation of academic qualifications &  work experience and interview.

-> Prepare for the exam using the BPSC Assistant Professor Previous Year Papers. For mock tests attempt the BPSC Assistant Professor Test Series.

More Calculus Questions

Get Free Access Now
Hot Links: teen patti win teen patti apk download teen patti rules all teen patti master teen patti real money app