Question
Download Solution PDFThree vectors \(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{q}}\) and \(\overrightarrow{\mathrm{r}}\) are given as
\(\overrightarrow{\mathrm{p}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}} \)
\(\overrightarrow{\mathrm{q}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \)
\(\overrightarrow{\mathrm{r}}=2 \hat{i}+3 \hat{j}+4 \hat{k}\)
Which of the following is/are CORRECT?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFExplanation:
(a) \(\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r}) \vec{q}-(\vec{p} \cdot \vec{q}) \vec{r}\)
(This is always true for any three given vectors)
(b) We know that \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\) is always true but \(\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}\) because \(\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}\)
This can be true only when \(\vec{a} \times \vec{b}=0\)
So, \(\quad \vec{r} \cdot(\vec{p} \times \vec{q})=\vec{r} .(\vec{q} \times \vec{p})\)
\(\vec{r} \cdot(\vec{p} \times \vec{q})=-\vec{r} \cdot(\vec{p} \times \vec{q})\)
This can be true if
\(\vec{r} \cdot(\vec{p} \times q) =0\)
\(\vec{p} \times \vec{q} =\hat{i}-2 \hat{j}+j\)
\((\vec{r} \cdot \vec{p} \times \vec{q})=0\) this is true in this case
(c) \(\overrightarrow{\mathrm{p}} \times(\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}})\) can't be equal to \((\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}) \times \overrightarrow{\mathrm{r}}\) because \(\vec{p} \times(\vec{q} \times \vec{r}) \perp \vec{p}\) and \((\vec{p} \times \vec{q}) \times \vec{r}) \perp \vec{r}\)
So, \((\vec{p} \times(\vec{q} \times \vec{r}) \neq(\vec{p} \times \vec{q})) \times \vec{r}\)
(d) \(\overrightarrow{\mathrm{p}} \times(\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}})+\overrightarrow{\mathrm{q}} \times(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}})+\overrightarrow{\mathrm{r}} \times(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})=\overrightarrow{0}\)
\((\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{q}}-(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}) \overrightarrow{\mathrm{r}}+(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{p}}) \overrightarrow{\mathrm{p}}-(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{p}}+(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{q}}) \overrightarrow{\mathrm{p}}-(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{q}}) \overrightarrow{\mathrm{q}} \)
0 = 0
\(\because \quad \vec{p} \cdot \vec{r} =\vec{r} \cdot \vec{p} \)
\(\vec{p} \cdot \vec{q} =\vec{q} \cdot \vec{p} \)
\(\vec{q} \cdot \vec{r} =\vec{r} \cdot \vec{q}\)
(Hence this is proved)
Last updated on Jan 8, 2025
-> The GATE CE Admit Card has been released on 7th January 2025. The examination will be conducted on 16th February 2025 in 2 shifts.
> The GATE CE 2025 Notification has been released on the GATE official website.
-> Candidates with a B.Tech degree in Civil Engineering can appear for the GATE CE exam.
-> Candidates preparing for the exam can refer to the GATE CE Preparation Tips to increase their chances of selection.
-> Candidates must attempt the GATE CE mock tests. Also, practice with GATE CE Previous Year Papers.