Solidification Time MCQ Quiz in తెలుగు - Objective Question with Answer for Solidification Time - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 16, 2025

పొందండి Solidification Time సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Solidification Time MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Solidification Time MCQ Objective Questions

Top Solidification Time MCQ Objective Questions

Solidification Time Question 1:

The solidification time of spherical casting of 400 mm diameter is 1272 second. Then its solidification factor is ___________ × 106 s/m2.

Answer (Detailed Solution Below) 0.285 - 0.287

Solidification Time Question 1 Detailed Solution

Concept:

Solidification time according to Chvorinov’s rule:

\({T_s} = K{\left( {\frac{V}{A}} \right)^2}\)

where K = Solidification factor, Ts = total solidification time, V = volume of the casting, A = surface area of the casting

Calculation:

Given:

D = 400 mm = 0.4 m, ts = 1272 sec

For a sphere:

\(\frac{V}{A} = \frac{{\frac{4}{3}\pi {r^3}}}{{4\pi {r^2}}} = \frac{r}{3} = \frac{D}{6}\)

\({t_s} = K{\left( {\frac{V}{A}} \right)^2} = K{\left( {\frac{D}{6}} \right)^2}\)

\(1272 = K{\left( {\frac{{0.4}}{6}} \right)^2}\)

K = 0.286 × 106 s/m2

Solidification Time Question 2:

Solidification time of riser should be:

  1. Equal to the solidification time of casting
  2. More than the casting
  3. Less than the casting
  4. Depends on the casting

Answer (Detailed Solution Below)

Option 2 : More than the casting

Solidification Time Question 2 Detailed Solution

Explanation:

Riser:

  • The riser is a reservoir of molten metal provided in the casting so that hot metal can flow back into the mould cavity when
    there is a reduction in the volume of metal due to solidification.
  • A riser must stay in a liquid state at least as long as the casting, and must be able to feed the casting during this time. 
    ∴ Solidification time of riser should be More than the casting.
  • In Casting process there are mainly two types of risers are used;
    • Open riser (Top Riser)
    • Blind riser (Side Riser)
  • The top riser is placed at the topmost point of the casting so that molten can rise up to the highest point of the casting.
  • The top surface of the riser will be open to the atmosphere hence we can visually check filling up of mould cavity in the top riser.
  • Blind Riser is completely enclosed in the mould and not exposed to the atmosphere.
  • Blind risers maintain heat longer than open risers.

F1 K.B 18.8.20 Pallavi D6

Thus, from the above information, we can conclude that Solidification time of riser should be More than the casting 
So, 
option 2 is the correct answer.

 

Chills:

  • Chills are metallic objects, which are placed in the mould to increase the cooling rate of castings to provide uniform or desired cooling rate.
  • Chills are provided to improve directional solidification.
  • The material of the chills should be the same as the casting material.

Solidification Time Question 3:

A cube casting solidifies in 3 min, solidification time for cube with same material and 27 times heavier than original casting, will be

  1. 16 min
  2. 21 min
  3. 25 min
  4. 27 min

Answer (Detailed Solution Below)

Option 4 : 27 min

Solidification Time Question 3 Detailed Solution

Concept:

τ (M)2

\({\rm{Modulus}} = \frac{{Volume}}{{Surface\;Area}}\)

Calculation:

Given:

τ1 = 3 minutes

\({M_1} = \frac{V}{A} = \frac{{{a^3}}}{{6{a^2}}} = \frac{a}{6}\)

\({M_2} = \frac{{27{a^3}}}{{6\; \times\; {{\left( {3a} \right)}^2}}} = \frac{a}{2}\)

\(\frac{{{\tau _1}}}{{{\tau _2}}} = {\left( {\frac{{{M_1}}}{{{M_2}}}} \right)^2}\)

\(\frac{{{\tau _1}}}{{{\tau _2}}} = {\left( {\frac{{\frac{a}{6}}}{{\frac{a}{2}}}} \right)^2} = \frac{1}{9}\)

τ2 = 9τ1

τ2 = 27 min     

Solidification Time Question 4:

A solid cylinder of diameter D and height equal to diameter and a solid cube of side a are being sand casted by using same material. The ratio of solidification time of the cylinder to the solidification time of the cube is

  1. \({\left( {\frac{a}{D}} \right)^2}\)
  2. \({\left( {\frac{{2a}}{D}} \right)^2}\)
  3. \({\left( {\frac{{2D}}{a}} \right)^2}\)
  4. \({\left( {\frac{D}{a}} \right)^2}\)

Answer (Detailed Solution Below)

Option 4 : \({\left( {\frac{D}{a}} \right)^2}\)

Solidification Time Question 4 Detailed Solution

Concept:

Solidification time according to Chvorinov’s rule:

\({\left( {{T_s}} \right)} = K{\left[ {\frac{V}{A}} \right]^2} \)

where K = solidification factor, Ts = total solidification time, V = volume of the casting and A = surface area of the casting.

Calculation:

Given:

Cylinder diameter = D, Cylinder height = D and Cube side = a.

\({\left( {{t_s}} \right)_{cylinder}} = K{\left[ {\frac{V}{A}} \right]^2} = K{\left[ {\frac{{\frac{\pi }{4}{D^2}H}}{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\pi } DH + 2.\frac{\pi }{4}{D^2}}}} \right]^2}\)

\(as,\;H = D \Rightarrow \frac{V}{A} = K{\left[ {\frac{{\frac{\pi }{4}{D^3}}}{{\frac{\pi }{2}{D^2} + \pi {D^2}}}} \right]^2} = K{\left[ {\frac{D}{6}} \right]^2}\)

\({\left( {{t_s}} \right)_{cube}} = K{\left[ {\frac{V}{A}} \right]^2} = K{\left[ {\frac{{{a^3}}}{{6{a^2}}}} \right]^2} = K{\left( {\frac{a}{6}} \right)^2}\)

\(\therefore\;\frac{{{{\left( {{t_s}} \right)}_{cylinder}}}}{{{{\left( {{t_s}} \right)}_{cube}}}} = \frac{{K{{\left[ {\frac{D}{6}} \right]}^2}}}{{K{{\left[ {\frac{a}{6}} \right]}^2}}} = {\left[ {\frac{D}{a}} \right]^2}\)

Solidification Time Question 5:

A casting of size 200 mm × 100 mm × 70 mm solidification 20 min. The solidification time for a casting 200 mm × 100 mm × 35 mm under similar condition is _________ min.

Answer (Detailed Solution Below) 9 - 9.1

Solidification Time Question 5 Detailed Solution

Concept:

Solidification time according to Chvorinov’s rule:

\({T_s} = K{\left( {\frac{V}{A}} \right)^2}\)

where K = Solidification factor, Ts = total solidification time, min; V = volume of the casting, cm3; A = surface area of the casting, cm2

Calculation:

V1 = (200 × 100 × 70) mm2 = 14 × 105 mm3

A1 = 2 [lb + bh + lh] = 2[(200 × 100) + (100 × 70) + (70 × 200)] = 82 × 103 mm2

V2 = (200 × 100 × 35) mm3 = 7 × 105 mm3

A2 = 2 [(200 × 100) + (100 × 35) + (35 × 200)] = 61 × 103 mm2

Solidification time ts

\(\therefore \frac{{{t_{s2}}}}{{{t_{s1}}}} = \frac{{{{\left[ {\frac{{{V_2}}}{{{A_2}}}} \right]}^2}}}{{{{\left[ {\frac{{{V_1}}}{{{A_1}}}} \right]}^2}}} = {\left[ {\frac{{7 \times {{10}^5}}}{{61 \times {{10}^3}}} \times \frac{{82 \times {{10}^3}}}{{14 \times {{10}^5}}}} \right]^2} = 0.452\)

ts1 = 20 min

∴ ts2 = 20 × 0.452 = 9.035 min

Solidification Time Question 6:

A cube and a sphere made of cast iron (each of volume 1000 cm3) were cast under identical conditions. The time taken for Solidifying the cube was 4 seconds. The Solidification time (in s) for the sphere is _________

Answer (Detailed Solution Below) 6.0 - 6.3

Solidification Time Question 6 Detailed Solution

Concept:

Solidification Time \(t= k{\left( {\frac{V}{A}} \right)^2}\)

where, V is the volume of casting in m3,

A is surface area of casting in m2

and k is solidification factor in s/m2.

Calculation:

given VC = VS = 1000 cm3 = 1000× 10-6 m3 and tc = 4 s.

for cube, V = a3, A = 6a2

\(t_c = 4 = k.\left( {\frac{{{a^3}}}{{6{a^2}}}} \right) = k.{\left( {\frac{a}{6}} \right)^2}\)

vol. of cube = vol of sphere

\(⇒ \frac{4}{3}\pi {r^3} = {a^3}\)

⇒ \(\frac{\pi }{6}{d^3} = {a^3}\)

\(\frac{d}{a} = {\left( {\frac{6}{\pi }} \right)^{\frac{1}{3}}}\)

Solidification time for sphere, \(V = \frac{4}{3}\pi {r^3} = \frac{\pi }{6}{d^3},\;A = 4\pi {r^2} = \pi {d^2}\)

\(t_S=k.{\left( {\frac{{\frac{4}{3}\pi {r^3}}}{{4\pi {r^2}}}} \right)^2} =k. {\left( {\frac{r}{3}} \right)^2}\)\( =k. {\left( {\frac{d}{6}} \right)^2}\)

\(\frac{{{t_S}}}{{{t_C}}} = \frac{{k{{\left( {\frac{d}{6}} \right)}^2}}}{{k{{\left( {\frac{a}{6}} \right)}^2}}} = {\left( {\frac{d}{a}} \right)^2}\)\( = {\left( {\frac{6}{\pi }} \right)^{\frac{2}{3}}}\)

\({t_S} = 1.539 \times 4\)

= 6.157 sec

Solidification Time Question 7:

Volume of a cube of side ‘l’ and volume of a sphere of radius ‘r’ are equal. Both the cube and the sphere are solid and of same material. They are being cast. The ratio of the solidification time of the cube to the same of the sphere is

  1. \({\left( {\frac{{4\pi }}{6}} \right)^3}{\left( {\frac{r}{l}} \right)^6}\)
  2. \(\left( {\frac{{4\pi }}{6}} \right){\left( {\frac{r}{l}} \right)^2}\)
  3. \({\left( {\frac{{4\pi }}{6}} \right)^2}{\left( {\frac{r}{l}} \right)^3}\)
  4. \({\left( {\frac{{4\pi }}{6}} \right)^2}{\left( {\frac{r}{l}} \right)^4}\)

Answer (Detailed Solution Below)

Option 4 : \({\left( {\frac{{4\pi }}{6}} \right)^2}{\left( {\frac{r}{l}} \right)^4}\)

Solidification Time Question 7 Detailed Solution

Concept:

Given that volumes are equal. So, Vcube = Vsphere.

\(Solidification\;Time = {\left( {\frac{V}{A}} \right)^2}\), A = Surface Area

Acube = 6l2

Asphere = 4πr2

\(Solidification\;time\;Ratio~(R) = \frac{{\left( {\frac{V}{A}} \right)_{cube}^2}}{{\left( {\frac{V}{A}} \right)_{sphere}^2}}\)

\(\Rightarrow R = {\left( {\frac{{{V_{cube}}}}{{{V_{sphere}}}}} \right)^2} \times{\left( {\frac{{{A_{sphere}}}}{{{A_{cube}}}}} \right)^2}\)

\(R = \frac{{{{\left( {4π {r^2}} \right)}^2}}}{{{{\left( {6{l^2}} \right)}^2}}} = {\left( {\frac{{4π }}{6}} \right)^2}\left( {\frac{{{r^4}}}{{{l^4}}}} \right)\)

Solidification Time Question 8:

A cylindrical body is to be cast for which height (h) is thrice its diameter, then the solidification time for this body is proportional to :

  1. d2
  2. d3
  3. d6
  4. d

Answer (Detailed Solution Below)

Option 1 : d2

Solidification Time Question 8 Detailed Solution

Explanation:

Solidification time:

  • It is the time required for a casting to solidify after pouring. This time is dependent on the size and shape of the casting.
  • There is an empirical relationship known as Chvorinov’s rule –
  • \({{\rm{t}}_{\rm{s}}} = {\rm{K }}{\left( {\frac{{\rm{V}}}{{{{\rm{A}}_{\rm{s}}}}}} \right)^2}\)
  • where ts = solidification time of casting (min), V = volume of casting (mm3), As = surface area of casting (mm2) and K = solidification factor (min/mm2).
  • i.e it indicates that casting with a higher volume-to-surface area ratio will cool and solidify more slowly than one with a lower ratio.

Calculation:

Given:

h = 3d, 

Area of Cylinder, 

\(A=2\frac {\pi}{4}d^2+\pi dh\)

\(A=\frac {\pi}{2}d^2+\pi d(3d)\)

\(A=\frac72 \pi d^2\)

Volume of Cylinder,

\(V=\frac{\pi}{4}d^2h=\frac{\pi}{4}d^2(3d)\)

\(V=\frac{3}{4}\pi d^3\)

Solidification time:

\({{\rm{t}}_{\rm{s}}} = {\rm{K }}{\left( {\frac{{\rm{V}}}{{{{\rm{A}}_{\rm{s}}}}}} \right)^2}\)

\({{\rm{t}}_{\rm{s}}} \propto {\rm{ }}{\left( {\frac{{\rm{V}}}{{{{\rm{A}}_{\rm{s}}}}}} \right)^2}\)

\(t_s \propto ( \frac{\frac34 \pi d^3}{\frac72 \pi d^2} )^2\)

\(t_s \propto d^2\)

Solidification Time Question 9:

A company is producing a disc-shaped product of 50 mm thickness and 1.0 m diameter using sand casting process. The solidification time of the above casting process is estimated by Chvorinov’s equation \(t = B\left[ {\frac{V}{A}} \right]^2\) , where B is the mold constant, and V and A are the volume and surface area of the casting, respectively. It is decided to modify both the thickness and diameter of the disc to 25 mm and 0.5 m, respectively, maintaining the same casting condition. The percentage reduction in solidification time of the modified disc as compared to that of the bigger disc is _________.[round off to one decimal place]

Answer (Detailed Solution Below) 74.5 - 75.5

Solidification Time Question 9 Detailed Solution

Concept:

Solidification time: The time taken for the liquid molten metal into the solid is known as solidification time

Chvorinov's equation for solidification time is given by:

\({\bf{t}} = {\bf{B}} \times \;{\left[ {\frac{{\bf{V}}}{{\bf{A}}}} \right]^2}\)

where, t = solidification timeB = mould constantV = volume of the castingA = surface area of the casting

Calculation:

Given:

\({\bf{t}} = {\bf{B}} \times \;{\left[ {\frac{{\bf{V}}}{{\bf{A}}}} \right]^2}\) ⇒ \({\bf{t}}\; \propto \;{\left[ {\frac{{\bf{V}}}{{\bf{A}}}} \right]^2}\)

\({\left[ {\frac{{\bf{V}}}{{\bf{A}}}} \right]^2} = \;\frac{{\frac{{\bf{\pi }}}{4} \times {{\bf{D}}^2} \times {\bf{h}}}}{{\left[ {\left( {2 \times \frac{{\bf{\pi }}}{4} \times {{\bf{D}}^2}} \right) + \left( {{\bf{\pi }} \times {\bf{D}} \times {\bf{h}}} \right)} \right]}}\)

Initial casting:

Diameter (\(D_i\)) = 1 m, thickness (\(h_i\)) = 50 mm = 0.05 m

\({\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]_{\rm{i}}}^2 = {\rm{\;}}\frac{{\frac{{\rm{\pi }}}{4} \times {1^2} \times 0.05}}{{\left[ {\left( {2 \times \frac{{\rm{\pi }}}{4} \times {1^2}} \right) + \left( {{\rm{\pi }} \times 1 \times 0.05} \right)} \right]}}\)

\({\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]_{\rm{i}}}^2 = 0.0005165\)

Modified casting:

Diameter (\(D_m\)) = 0.5 m, thickness (\(h_m\)) = 25 mm = 0.0025 m

\({\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]_{\rm{m}}}^2 = {\rm{\;}}\frac{{\frac{{\rm{\pi }}}{4} \times {{0.5}^2} \times 0.025}}{{\left[ {\left( {2 \times \frac{{\rm{\pi }}}{4} \times {{0.5}^2}} \right) + \left( {{\rm{\pi }} \times 0.5 \times 0.025} \right)} \right]}}\)

\({\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]_{\rm{m}}}^2 = 0.0001291\)

% reduction of solidification time is:

\(\frac{{{{\rm{t}}_{\rm{i}}} - {{\rm{t}}_{\rm{m}}}}}{{{{\rm{t}}_{\rm{i}}}}} \times 100 = {\rm{\;}}\frac{{{{\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]}_{\rm{i}}}^2 - {\rm{\;}}{{\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]}_{\rm{m}}}^2}}{{{{\left[ {\frac{{\rm{V}}}{{\rm{A}}}} \right]}_{\rm{i}}}^2}} = {\rm{\;}}\frac{{0.0005165{\rm{\;}} - {\rm{\;}}0.0001291}}{{0.0001565}} \times 100 = 75{\rm{\% }}\)

∴ the % reduction in solidification time is 75%

Solidification Time Question 10:

A cast product of a particular material has dimensions 75 mm × 125 mm × 20 mm. The total solidification time for the cast product is found to be 2.0 minutes as calculated using Chvorinov's rule having the index, n = 2. If under the identical casting conditions, the cast product shape is changed to a cylinder having diameter = 50 mm and height = 50 mm, the total solidification time will be _________ minutes (round off to two decimal places).

Answer (Detailed Solution Below) 2.6 - 3

Solidification Time Question 10 Detailed Solution

Concept:

Chvorinov’s law for solidification time.

\(Time = k{\left( {\frac{{Volume}}{{Area}}} \right)^2}\)

\(\left( {\frac{{Volume}}{{Surface\;Area}} = Modulus} \right)\)

For same material 'k' is same.

∴ Time ∝ (Modulus)2

Modulus for cylinder shape \(= \frac{{\frac{{\pi {D^2}}}{4} \times D}}{{\left( {2 \times \frac{{\pi {D^2}}}{4}} \right) \;+ \;(\pi D \times D)}} = \frac{D}{6}\)  (∵ H = D)

Calculation:

Given:

Steel rectangular plate with dimensions = 75 mm × 125 mm × 20 mm, t = 2 minutes

Modulus of steel plate \(= \frac{{75\; \times \;125 \;\times \;20}}{{2\left[ {(75 \;\times \;125) \;+ \;(20 \;\times \;125)\; + \;(75 \;\times \;20)} \right]}} = 7\;mm\) 

Cylinder H = 50 mm, D = 50 mm.

Modulus for cylinder shape \(= \frac{D}{6}=\frac{50}{6}=8.33\;mm\) 

Time ∝ (Modulus)2

\(\Rightarrow \frac{{Time\;of\;cylinder}}{{Time\;of\;plate}} = {\left( {\frac{{Module\;of\;cylinder}}{{Module\;of\;plate}}} \right)^2}\)

\(\Rightarrow \frac{t}{2} = {\left( {\frac{{8.33}}{{{{7}}{{}}}}} \right)^2}\)

∴ t = 2.83 minutes

Get Free Access Now
Hot Links: teen patti gold download apk teen patti star teen patti real money app