Algebraic variable elements MCQ Quiz in தமிழ் - Objective Question with Answer for Algebraic variable elements - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 23, 2025

பெறு Algebraic variable elements பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Algebraic variable elements MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Algebraic variable elements MCQ Objective Questions

Top Algebraic variable elements MCQ Objective Questions

Algebraic variable elements Question 1:

Find the value of x;  |x12203456| = 0

  1. 4/3
  2. 2/3
  3. 1/3
  4. 5/3

Answer (Detailed Solution Below)

Option 1 : 4/3

Algebraic variable elements Question 1 Detailed Solution

Calculation: 

Given |x12203456| = 0

⇒ x(0 - 15) - 1(12 - 12) + 2(10) = 0

Now, - 15x + 20 = 0

⇒ 15x = 20

⇒ x = 20/15

⇒ x = 4/3

∴ The value of x is 4/3

Algebraic variable elements Question 2:

Let px3+qx2+rx+s=|x2x3xx+3xx12xxx+1|then the value of p + q + r + s equal to?

  1. 19
  2. 214
  3. -24
  4. 44

Answer (Detailed Solution Below)

Option 3 : -24

Algebraic variable elements Question 2 Detailed Solution

Calculation:

Here, px3+qx2+rx+s=|x2x3xx+3xx12xxx+1|

⇒ px3+qx2+rx+s = x[(x + 1)(x) - (x)(-x)] - 2x [(x + 3)(x+1) - x(1 - 2x)] + 3x[-x(x+3)-x(1-2x)]

x(x2+x+x2)2x(x2+4x+3x+2x2)+3x(x23xx2x2)

x(2x2+x)2x(3x2+3x+3)+3x(x24x)

2x3+x26x36x26x+3x312x2

x317x26x

So, p = - 1, q = - 17, r = - 6, s = 0

p + q + r + s = - 1 - 17 - 6 = - 24

Hence, option (3) is correct. 

Algebraic variable elements Question 3:

What is the value of the determinant:

|x+2x+3x+5x+4x+6x+9x+8x+11x+15|

  1. x - 2
  2. -2
  3. x+2
  4. 2

Answer (Detailed Solution Below)

Option 2 : -2

Algebraic variable elements Question 3 Detailed Solution

Calculation:

Let Δ = |x+2x+3x+5x+4x+6x+9x+8x+11x+15|

 By applying C2C2C1,C3C3C1=|x+213x+425x+837|

 By applying R2R2R1, and R3R3R2

=|x+213212412|

= (x + 2) (0) - 1 (4 - 8) + 3(2 - 4)

= 4 - 6

= -2

Hence, option (2) is correct.

Algebraic variable elements Question 4:

If a, b, c are real numbers, then the value of the determinant |1aabcb+c1bbcac+a1ccaba+b| is

  1. 0
  2. (a - b) (b - c) (c - a)
  3. (a + b + c) 2
  4. (a + b + c) 3

Answer (Detailed Solution Below)

Option 1 : 0

Algebraic variable elements Question 4 Detailed Solution

Concept:

Properties of Determinants:

  • The determinant evaluated across any row or column is the same.
  • If all the elements of a row or column are zeroes, then the value of the determinant is zero.
  • The determinant of an Identity matrix is 1.
  • If rows and columns are interchanged then the value of determinant remains the same (value does not change).
  • If any two rows or two columns of a determinant are interchanged the value of the determinant is multiplied by -1.
  • If two rows or columns of a determinant are identical the value of the determinant is zero.

 

Calculation:

Let Δ=|1aabcb+c1bbcac+a1ccaba+b|

Applying c2 → c2 + c3, we get

Δ=|1aab+c1bbc+a1cca+b|

Applying c1 → c1 + c2, c3 → c3 + c2, we get

Δ=|1aa+b+c1bb+c+a1cc+a+b|

Taking common a + b + c from C3, we get

Δ=(a+b+c)|1a11b11c1|

We know that if two columns of a determinant are identical, the value of the determinant is zero.

∴ Δ = 0

Algebraic variable elements Question 5:

If Δ=|1+a11 11+b1 111+c| then consider the following statements

I. if 1a+1b+1c=0, then Δ = abc,

II. a-1 + b-1 + c-1 = -1, then Δ = 0

Which of the above statements is/are correct?

  1. Only I
  2. Only II
  3. Both I and II
  4. Neither I nor II

Answer (Detailed Solution Below)

Option 3 : Both I and II

Algebraic variable elements Question 5 Detailed Solution

Δ=|1+a11 11+b1 111+c|

Taking common a, b, and c from R1, R2, and R3 respectively,

⇒ Δ=abc|1+1a1a1a 1b1+1b1b 1c1c1+1c|

Applying  R1 →  R1 + R2 + R3 

⇒ Δ=abc|1+1a+1b+1c1+1a+1b+1c1+1a+1b+1c 1b1+1b1b 1c1c1+1c|

Taking common 1+1a+1b+1c from R1,

⇒ Δ=abc(1+1a+1b+1c)|111 1b1+1b1b 1c1c1+1c|

Applying C2 →  C2 - C1, C3 →  C3 - C1 

⇒ Δ=abc(1+1a+1b+1c)|100 1b10 1c01|

⇒ Δ=abc(1+1a+1b+1c)

So, if 1a+1b+1c=0, then Δ = abc(1 + 0) = abc

⇒ Statement I is correct

And, a-1 + b-1 + c-1 = -1,

⇒  1+1a+1b+1c=0 then Δ = 0

⇒ Statement II is correct

∴ The correct answer is option (3).

Algebraic variable elements Question 6:

If |yxy+z zyx+yxzz+x|=0, then which one of the following is correct?

  1. Either x + y = z or x = y
  2. Either x + y = -z or x = z
  3. Either x + z = y or z = y
  4. Either z + y = x or x = y

Answer (Detailed Solution Below)

Option 2 : Either x + y = -z or x = z

Algebraic variable elements Question 6 Detailed Solution

Given:

|yxy+z zyx+yxzz+x|=0

Calculations:

⇒ |yxy+z zyx+yxzz+x|=0

Apply R1 → R+ R+ R3

⇒ |x+y+zx+y+z2(x+y+z) zyx+yxzz+x|=0

Take (x + y + z) common from R1

⇒ (x + y + z) |112 zyx+yxzz+x|=0

Apply C2 → C1 - C2 and C3 → C3 - 2C1

⇒ (x+y+z)|100 zzyx+y2zxzxzx|=0

Now take the determinant, we get

⇒ (x + y + z)[1(z - y)(z - x) - (z - x)(x + y - 2z)] = 0

⇒ (x + y + z) (z - x)(z - y - x - y + 2z) = 0

⇒  x + y + z = 0 and z - x = 0

∴ The value is either x + y = -z or x = z.

Algebraic variable elements Question 7:

|1aa2bc1bb2ac1cc2ab| is equal to ?

  1. 0
  2. 3abc
  3. (a + b + c)3
  4. a3 + b3+ c3 - 3abc

Answer (Detailed Solution Below)

Option 1 : 0

Algebraic variable elements Question 7 Detailed Solution

Concept:

If we have any matrix with two identical rows or columns then its determinant is equal to zero.

Calculation:

Let Δ = |1aa2bc1bb2ac1cc2ab|

R1 → R1 - R2

R2 → R2 - R3

⇒ Δ = |0ab(ab)(a+b+c)0bc(bc)(a+b+c)1cc2ab|

[(a2 - bc) - (b2 - ac) = a2 - b2 + ac - bc = (a + b)(a - b) +c(a - b) = (a - b)(a + b + c)

and (b2 - ac) - (c2 - ab) = b2 - c2 + ab - ac = (b + c)(b - c) +a(b - c) = (b - c)(a + b + c)]

Taking (a - b) and (b - c) common,

⇒ Δ = (a - b)(b - c)|01a+b+c01a+b+c1cc2ab| = 0   

[If we have any matrix with two identical rows or columns then its determinant is equal to zero.]

∴​ |1aa2bc1bb2ac1cc2ab| = 0

Algebraic variable elements Question 8:

The value of the determinant |abca+2xb+2yc+2zxyz| is.

  1. 1
  2. 0
  3. ax + by + cz
  4. x + y + z

Answer (Detailed Solution Below)

Option 2 : 0

Algebraic variable elements Question 8 Detailed Solution

Concept:

  • If two rows or columns of a determinant are identical the value of the determinant is zero.
  • In a determinant each element in any row (or column) consists of the sum of two terms, then the determinant can be expressed as the sum of two determinants of the same order. For example,​ |a+xba+yc|=|abac|=|xbyc| 

Solution:

Let Δ=|abca+2xb+2yc+2zxyz|=|abcabcxyz|+|abc2x2y2zxyz|

As we know that, if any two rows (columns) of a matrix are the same then the value of the determinant is zero.

=0+|abc2x2y2zxyz|=|abc2x2y2zxyz|

Apply R2 → R2 - R3 on the above determinant, and we get

=|abcxyzxyz| = 0 

As we know, If two rows or columns of a determinant are identical the value of the determinant is zero. Therefore, Δ = 0

∴ The correct option is (2)

Algebraic variable elements Question 9:

If a + b + c = 0, then the solution of the equation |axcbcbxabacx|=0, x ≠ 0 is

  1. 0
  2. ±32(a2+b2+c2)
  3. ±32(a2+b2+c2)
  4. ±a2+b2+c2

Answer (Detailed Solution Below)

Option 3 : ±32(a2+b2+c2)

Algebraic variable elements Question 9 Detailed Solution

Formula used:

(a + b + c)= a2 + b2 + c + 2(ab + bc + ca)

Calculation:

Given |axcbcbxabacx|=0

C1 → C+ C2 + C3

⇒ |a+b+cxcba+b+cxbxaa+b+cxacx|=0 

Take Common (a + b + c - x) from C1, we get

⇒ (a + b + c - x) |1cb1bxa1acx|=0

⇒ (a + b + c - x) = 0 or |1cb1bxa1acx|=0

⇒ a + b + c = x

⇒ x = 0    [ ∵ a + b + c = 0]

But according to question x ≠ 0

(or) |1cb1bxa1acx|=0
 

By expanding the determinant we have

⇒ 1[(b - x)(c - x) - a2] - c(c - x - a) + b (a - b + x) = 0

⇒ x2 - (a2 + b2 + c2) + (ab + bc + ca) = 0

⇒ x2 = (a2 + b2 + c2) - (ab + bc + ca)     ----(1)

Let (a2 + b2 + c2= ∑a2 and (ab + bc + ca) = ∑ab then,

[(a + b + c)= a2 + b2 + c + 2(ab + bc + ca)

⇒ 0 = ∑ a2 + 2∑ ab      [a + b + c = 0]          ----(2)

From (1) and (2), we get

⇒ x = ±32a2

⇒ x = ±32(a2+b2+c2)

Hence, the correct answer is option 3)

Algebraic variable elements Question 10:

Find the determinant of A = [x2y22xyxy0112], if x + y = 0

  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 1 : 0

Algebraic variable elements Question 10 Detailed Solution

Concept:

Properties of determinants:

  • If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
  • If we interchange any two rows (columns) of a matrix, then the determinant is multiplied by -1.
  • If any two rows (columns) of a matrix are same then the value of the determinant is zero.

 

Calculation:

A = [x2y22xyxy0112] 

|A| = |x2y22xyxy0112|

c3 = c3 - c1 - c2

|A| = |x2y2(2xy+x2+y2)xy0xy11211|

|A| = |x2y2(x+y)2xy(x+y)110|

|A| = |x2y20xy0110|

|A| = 0

Get Free Access Now
Hot Links: all teen patti teen patti jodi real cash teen patti teen patti gold downloadable content