Properties of DTFT MCQ Quiz in मराठी - Objective Question with Answer for Properties of DTFT - मोफत PDF डाउनलोड करा

Last updated on Apr 13, 2025

पाईये Properties of DTFT उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Properties of DTFT एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Properties of DTFT MCQ Objective Questions

Top Properties of DTFT MCQ Objective Questions

Properties of DTFT Question 1:

Given that the DTFT of 0.8n u(n) is \(\frac{1}{{1 - 0.8{e^{ - j\omega }}}}.\) Then the DTFT of

\(x\left( n \right) = \left\{ {\begin{array}{*{20}{c}} {{{\left( {0.8} \right)}^n};for\;0 \le n \le 5}\\ {0;otherwise} \end{array}} \right.\) will be

  1. \(\frac{{1 - {{0.8}^6}\;{e^{ - j6\omega }}}}{{1 - 0.8\;{e^{ - j\omega }}}}\)
  2. \(\frac{{1 + 0.8\;{e^{ - j6\omega }}}}{{1 - 0.8\;{e^{ - j\omega }}}}\)
  3. \(\frac{{1 - 0.8{e^{ - j6\omega }}}}{{1 - 0.8{e^{ - j\omega }}}}\)
  4. \(\frac{{1 - {{0.8}^6}{e^{ - j6\omega }}}}{{1 + 0.8{e^{ - j\omega }}}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{1 - {{0.8}^6}\;{e^{ - j6\omega }}}}{{1 - 0.8\;{e^{ - j\omega }}}}\)

Properties of DTFT Question 1 Detailed Solution

Concept:

\(x\left( n \right)u\left( n \right)\overset{DTFT}{\longleftrightarrow }x\left( \omega \right)\)

The time-shifting property states that:

\(x\left( {n\; - \;6} \right)u\left( {n\; - \;6} \right)\overset{DTFT}{\longleftrightarrow } x\left( \omega \right){e^{ - j6\omega }}\)

Application:

\({0.8^n}\;u\left( n \right)\overset{DTFT}{\longleftrightarrow } \frac{1}{{1 - 0.8{e^{ - j\omega }}}}\)

Now, we wish to calculate the DTFT of

\(x\left( n \right) = \left\{ {\begin{array}{*{20}{c}} {{{\left( {0.8} \right)}^n},}&{for\;0 \le n \le 5}\\ {0,}&{Otherwise} \end{array}} \right.\)

This can be written as:

x(n) = (0.8)n [u(n) - u(n - 6)]

x(n) = (0.8)n u(n) – (0.8)n u(n - 6)

x(n) = (0.8)n u(n) – (0.8)6 (0.8)n – 6 u(n - 6)

Using time-shifting property, the DTFT of x(n) will be:

\(X\left( \omega \right) = \frac{1}{{1 - 0.8{e^{ - j\omega }}}} - \frac{{{{\left( {0.8} \right)}^6}{e^{ - j6\omega }}}}{{1 - 0.8{e^{ - j\omega }}}}\)

\(X\left( \omega \right) = \frac{{1 - {{0.8}^6}\;{e^{ - j6\omega }}}}{{1 - 0.8\;{e^{ - j\omega }}}}\)

Alternate Method (Option checking):

1) Option (3) is ruled out because we can see that DTFT of x(n) will consist of two terms as the interval 0 ≤ n ≤ 5 and can be defined by:

\(\underbrace {u\left( n \right)}_{one\;term} - \underbrace {u\left( {n - 6} \right)}_{another\;term}\)

2) Option (4) is ruled out since there is a positive sign in the denominator that comes only when (-a)n u(n) is given. But we have 0.8 which does not contain a negative sign in the given question.

3) Option (2) is also ruled out since DTFT of both terms u(n) and u(n - 6) components are getting added. Instead, they must have been subtracted.

So the correct answer is Option (1).

Tips: In the early stage of learning, try to eliminate the options. Eventually, with practice, one can get used to it to solve all the easy questions in minimum time.

Properties of DTFT Question 2:

Let us consider \(X\left( {{e^{j\omega }}} \right) = \frac{1}{{a + {e^{j\omega }}}}\). Its inverse DTFT is x(n) then DTFT of y(n) = x2(n) is:

  1. \(\frac{1}{{{a^2} - {e^{ - j\omega }}}}\)
  2. \(\frac{1}{{{e^{j\omega }} - {a^2}}}\)
  3. \(\frac{{{e^{j\omega }}}}{{{e^{ - j\omega }} - {a^2}}}\)
  4. \(\frac{{{e^{j\omega }}}}{{{e^{ - j\omega }} + {a^2}}}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{{{e^{j\omega }} - {a^2}}}\)

Properties of DTFT Question 2 Detailed Solution

Concept:

The DTFT and Inverse DTFT is defined as:

\(X\left( {{e}^{j\omega }} \right)=\underset{n=-\infty }{\overset{\infty }{\mathop \sum }}\,x\left( n \right){{e}^{-j\omega n}}\)

\(x\left( n \right)=\frac{1}{2\pi }\underset{-\pi }{\overset{\pi }{\mathop \int }}\,X\left( {{e}^{j\omega }} \right){{e}^{j\omega n}}d\omega\)

Application:

If \(x\left( n \right) = {\left( { - a} \right)^{n - 1}}u\left( {n - 1} \right)\)

The Fourier transform will be:

\(X\left( \omega \right) = \frac{{{e^{ - j\omega }}}}{{1 + a{e^{ - j\omega }}}} \Rightarrow \frac{1}{{a + {e^{j\omega }}}}\)

x2(n) → (a2)n-1 u(n – 1)

∴ DTFT of x2(n) will be:

\({x^2}\left( n \right) = \mathop \sum \nolimits_{n = - \infty }^\infty {\left( {{a^2}} \right)^{n - 1}}u\left( {n - 1} \right){e^{ - j\omega n}}\)

\( = \frac{1}{{{a^2}}}\mathop \sum \nolimits_{n = 1}^\infty {\left( {{a^2}{e^{ - j\omega }}} \right)^n}\)

\(= \frac{1}{{{a^2}}}\frac{{{a^2}{e^{ - j\omega }}}}{{1 - {a^2}{e^{ - j\omega }}}}\)

\(= \frac{{{e^{ - j\omega }}}}{{1 - {a^2}{e^{ - j\omega }}}} = \frac{1}{{{e^{j\omega }} - {a^2}}}\)

Properties of DTFT Question 3:

Consider a complex exponential sequence \({e^{j{\omega _0}n}}\) with frequency ω0. Suppose ω0 = 1, then 

  1. Such a sequence is periodic
  2. Such a sequence is not periodic at all
  3. Periodic for some value of period ‘N’
  4. Some definite range N0 < n < N exists for a periodic sequence

Answer (Detailed Solution Below)

Option 2 : Such a sequence is not periodic at all

Properties of DTFT Question 3 Detailed Solution

Concept:

Any discrete signal is said to be periodic if:

\(\frac{{{\omega _0}}}{{2\pi }}\) is a rational number \(\left( {\frac{M}{N}} \right)\)

Calculation:

Given signal is \({e^{j{\omega _0}n}}\), ω0 = 1 rad / sec

\(\frac{{{\omega _0}}}{{2\pi }} = \frac{1}{{2\pi }}\) 

Since this is not a rational number, so it is not periodic at all.

Note:

Continuous sinusoidal and complex sinusoids are periodic for every value of ‘ω0’, but discrete-time signals are periodic only if \(\frac{{{\omega _0}}}{{2\pi }}\) is a rational number \(\frac{M}{N}\).

Properties of DTFT Question 4:

A real-valued discrete-time signal x[n] has Fourier transform X(e) that is zero for \(\frac{{3\pi }}{{14}} \le \omega \le \pi .\) To make the non-zero portion of Fourier transform occupy the region |ω| < π the signal is subjected to decimation and interpolation. If L is the upsampling factor and N is the downsampling factor, which of the following result is/are true? 

  1. The value of L is 3
  2. The value of L should be 14
  3. The value of N should be 3
  4. The value of N should be 14

Answer (Detailed Solution Below)

Option :

Properties of DTFT Question 4 Detailed Solution

Let the signal in frequency be represented by:

20.12.2018.001.00376

To occupy the entire region from -π to π, x[n] must be down sample by factor 14/3

Since it is not possible to down sample by non-integer factor, up sample single first by 3 (= L).

Then down sample signal by 14 (= N).

Thus, L = 3

N = 14

Properties of DTFT Question 5:

The Fourier transform of a particular signal is \(X\left( {{e^{j\omega }}} \right) = \mathop \sum \limits_{k = 0}^3 \frac{{{{\left( {\frac{1}{2}} \right)}^k}}}{{1 - \frac{1}{4}{e^{ - j\left( {\omega - \frac{\pi }{2}k} \right)}}}}\)

The function x[n] = g[n].q[n], where g[n] is of form αn u[n] and q[n] is a periodic function with period N.

The value of αN is ______

Answer (Detailed Solution Below) 1

Properties of DTFT Question 5 Detailed Solution

\(\begin{array}{l} X\left( {{e^{i\omega }}} \right) = \frac{1}{{1 - \frac{1}{4}{e^{ - j\left( {\omega - 0} \right)}}}} + \frac{{\frac{1}{2}}}{{1 - \frac{1}{4}{e^{ - j\left( {\omega - \frac{\pi }{2}} \right)}}}} + \frac{{{{\left( {\frac{1}{2}} \right)}^2}}}{{1 - \frac{1}{4}{e^{ - j\left( {\omega - \frac{{2\pi }}{2}} \right)}}}} + \frac{{{{\left( {\frac{1}{2}} \right)}^3}}}{{1 - \frac{1}{4}{e^{ - j\left( {\omega - \frac{{3\pi }}{2}} \right)}}}}\\ x\left[ n \right] = {\left( {\frac{1}{4}} \right)^n}u\left[ n \right] + \frac{1}{2}{e^{\frac{{j\pi }}{{2n}}}}{\left( {\frac{1}{4}} \right)^n}u\left[ n \right] + {\left( {\frac{1}{2}} \right)^2}{e^{j\pi 4}}{\left( {\frac{1}{4}} \right)^n}u\left[ n \right] + {\left( {\frac{1}{2}} \right)^3}{\left( {\frac{1}{4}} \right)^n}{e^{\frac{{j3\pi }}{{2n}}}}u\left[ n \right]\\ = {\left( {\frac{1}{4}} \right)^{n}}u\left[ n \right]\left[ {1 + \frac{1}{2}{e^{\frac{{j\pi }}{{2n}}}} + {{\left( {\frac{1}{2}} \right)}^2}{e^{j\pi n}} + {{\left( {\frac{1}{2}} \right)}^3}{e^{\frac{{j3\pi }}{{2n}}}}} \right] \end{array}\)

= g[n].q[n]

 g[n] is of form αn u[n]

⇒ α = ¼

Period of q[n] is 4

Hence the product αN = ¼ × 4 = 1

Properties of DTFT Question 6:

\({\rm{x}}\left[ {\rm{n}} \right]\) be a discrete time signal whose Fourier transform \({\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\) is shown below

Gate EC Signal and Systems Images-Q21

The delay time of \({\rm{x}}\left[ {\rm{n}} \right]\) is defined by the quantity,

\({\rm{\alpha }} = \frac{{\mathop \sum \nolimits_{{\rm{n}} = - \infty }^\infty {\rm{nx}}\left[ {\rm{n}} \right]}}{{\mathop \sum \nolimits_{{\rm{n}} = - \infty }^\infty {\rm{x}}\left[ {\rm{n}} \right]}}\) The value of \({\rm{\alpha }}\) is _____

Answer (Detailed Solution Below) 1.9 - 2

Properties of DTFT Question 6 Detailed Solution

We have

\({\rm{x}}\left[ {\rm{n}} \right]\mathop \leftrightarrow \limits^{{\rm{FT}}} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\) 

From properties of Fourier transform we have,

\({\rm{nx}}\left[ {\rm{n}} \right]\mathop \leftrightarrow \limits^{{\rm{FT}}} {\rm{j}}\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}}\) 

Rewriting it we have

\({\rm{j}}\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}} = \mathop \sum \limits_{{\rm{n}} = - \infty }^\infty {\rm{nx}}\left[ {\rm{n}} \right] \cdot {{\rm{e}}^{ - {\rm{j\omega n}}}}\) 

Putting ω = 0, we have

\({\rm{j\;}}{\left. {\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}}} \right|_{{\rm{\omega }} = 0}} = \mathop \sum \limits_{{\rm{n}} = - \infty }^\infty {\rm{nx}}\left[ {\rm{n}} \right]\) 

Likewise,

\({\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) = \mathop \sum \limits_{{\rm{n}} = - \infty }^\infty {\rm{x}}\left[ {\rm{n}} \right]{{\rm{e}}^{ - {\rm{j\omega n}}}}\) 

Again at ω = 0

\({\rm{X}}{\left. {\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)} \right|_{{\rm{\omega }} = 0}} = \mathop \sum \limits_{{\rm{n}} = - \infty }^\infty {\rm{x}}\left[ {\rm{n}} \right]\) 

Since, for calculating α, we need value only at \({\rm{\omega }} = 0\). So, simply, we express \({\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\) mathematically for interval \(\left( { - \frac{{\rm{\pi }}}{6},\frac{{\rm{\pi }}}{6}} \right)\)

So,

\(\begin{array}{l} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) = 1 + {\rm{j}}\left( {\frac{{ - 4}}{{\frac{{2{\rm{\pi }}}}{3}}}} \right){\rm{\omega \;\;\;\;\;\;\;\;\;}}-\frac{{\rm{\pi }}}{6} < {\rm{\omega }} < \frac{{\rm{\pi }}}{6}\\ \Rightarrow {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) = 1 - {\rm{j}}\left( {\frac{6}{{\rm{\pi }}}} \right){\rm{\omega }} \end{array}\)

Thus, \({\rm{X}}{\left. {\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)} \right|_{{\rm{\omega }} = 0}} = 1\) 

and \(\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}} = - {\rm{j}}\left( {\frac{6}{{\rm{\pi }}}} \right)\)

\(\Rightarrow {\rm{j}}{\left. {\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}}} \right|_{{\rm{\omega }} = 0}} = \left( {\frac{6}{{\rm{\pi }}}} \right)\) 

Now,

\({\rm{\alpha }} = \frac{{\mathop \sum \nolimits_{{\rm{n}} = - \infty }^\infty {\rm{nx}}\left[ {\rm{n}} \right]}}{{\mathop \sum \nolimits_{{\rm{n}} = - \infty }^\infty {\rm{x}}\left[ {\rm{n}} \right]}}\) 

Substituting the Fourier equivalents we have,

\(\begin{array}{l} {\rm{\alpha }} = \frac{{{\rm{j}}{{\left. {\frac{{{\rm{dX}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)}}{{{\rm{d\omega }}}}} \right|}_{{\rm{\omega }} = 0}}}}{{{{\left. {{\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)} \right|}_{{\rm{\omega }} = 0}}}}\\ \Rightarrow {\rm{\alpha }} = \frac{{\left( {\frac{6}{{\rm{\pi }}}} \right)}}{1} = \frac{6}{{\rm{\pi }}} \end{array}\)

Properties of DTFT Question 7:

The input \({\rm{x}}\left[ {\rm{n}} \right] = \mathop \sum \limits_{{\rm{k}} = - \infty }^\infty {\left( {\frac{1}{2}} \right)^{{\rm{n}} - 4{\rm{k}}}}{\rm{u}}\left[ {{\rm{n}} - 4{\rm{k}}} \right]\) is passed through the LTI filter \({\rm{h}}\left[ {\rm{n}} \right]\) whose spectrum is shown below

Gate EC Signals and systems Live Images-Q11

The value of output \({\rm{y}}\left[ {\rm{n}} \right]\) at \({\rm{n}} = 4\) is ____________.

Answer (Detailed Solution Below) 0

Properties of DTFT Question 7 Detailed Solution

Using the property that \(\rm{c[n]\ast\delta[n-n_\circ]=c[n-n_\circ]}\),

\({\rm{x}}\left[ {\rm{n}} \right]\) can be rewritten, as

\({\rm{x}}\left[ {\rm{n}} \right] = {\left( {\frac{1}{2}} \right)^{\rm{n}}}{\rm{u}}\left[ {\rm{n}} \right]{\rm{*}}\mathop \sum \limits_{{\rm{k}} = - \infty }^\infty {\rm{\delta }}\left[ {{\rm{n}} - 4{\rm{k}}} \right]\)

Let, \({\left( {\frac{1}{2}} \right)^{\rm{n}}}{\rm{u}}\left[ {\rm{n}} \right] = {\rm{p}}\left[ {\rm{n}} \right]\)and \(\mathop \sum \limits_{{\rm{k}} = - \infty }^\infty {\rm{\delta }}\left[ {{\rm{n}} - 4{\rm{k}}} \right] = {\rm{q}}\left[ {\rm{n}} \right]\).

Now, \({\rm{y}}\left[ {\rm{n}} \right]\) can be obtained by first passing \({\rm{q}}\left[ {\rm{n}} \right]\) through the filter with response \({\rm{H}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\) and the convolving the result with \({\rm{p}}\left[ {\rm{n}} \right]\).

Now, \({\rm{q}}\left[ {\rm{n}} \right]\) is periodic with period \(4\), the Fourier series coefficient \({{\rm{a}}_{\rm{k}}}\) of \({\rm{q}}\left[ {\rm{n}} \right]\) are

\({{\rm{a}}_{\rm{k}}} = \frac{1}{4}\) for all \({\rm{k}}\left(\because {{\rm{for}}\mathop \sum \limits_{{\rm{k}} = - \infty }^\infty {\rm{\delta }}\left[ {{\rm{n}} - {\rm{pk}}} \right]\mathop \leftrightarrow \limits^{{\rm{DFS}}} {{\rm{a}}_{\rm{k}}} = \frac{1}{{\rm{p}}}{\rm{for\ all\ k}}} \right)\)

Now, output \({\rm{r}}\left[ {\rm{n}} \right] = {\rm{q}}\left[ {\rm{n}} \right]{\rm{*h}}\left[ {\rm{n}} \right]\)

As, the signal is periodic, taking the convolution over one period we have,

\(\begin{array}{l} {\rm{r}}\left[ {\rm{n}} \right] = \mathop \sum \limits_{{\rm{k}} = 0}^3 {{\rm{a}}_{\rm{k}}}{{\rm{e}}^{{\rm{jk}}\left( {\frac{{2{\rm{\pi }}}}{4}} \right){\rm{n}}}} \cdot {\rm{H}}\left( {{{\rm{e}}^{{\rm{jk}}\left( {\frac{{2{\rm{\pi }}}}{4}} \right)}}} \right)\\ \Rightarrow {\rm{r}}\left[ {\rm{n}} \right] = {{\rm{a}}_0}{{\rm{e}}^{{\rm{j}}0}}{\rm{H}}\left( {{{\rm{e}}^{{\rm{j}}0}}} \right) + {{\rm{a}}_1}{{\rm{e}}^{\frac{{{\rm{j\pi n}}}}{2}}}{\rm{H}}\left( {{{\rm{e}}^{{\rm{j}}\frac{{\rm{\pi }}}{2}}}} \right) + {{\rm{a}}_2}{{\rm{e}}^{{\rm{j\pi n}}}} \cdot {\rm{H}}\left( {{{\rm{e}}^{{\rm{j\pi }}}}} \right) + {{\rm{a}}_3}{{\rm{e}}^{{\rm{j}}\frac{{3{\rm{\pi n}}}}{2}}}{\rm{H}}\left( {{{\rm{e}}^{{{\rm{e}}^{\frac{{{\rm{j}}3{\rm{\pi }}}}{2}}}}}} \right) \end{array}\)

Now since all \({\rm{H}}\left( {{{\rm{e}}^{{\rm{j}}0}}} \right),{\rm{H}}\left( {{{\rm{e}}^{\frac{{{\rm{j\pi }}}}{2}}}} \right),{\rm{H}}\left( {{{\rm{e}}^{{\rm{j\pi }}}}} \right)\) and \({\rm{H}}\left( {{{\rm{e}}^{\frac{{{\rm{j}}3{\rm{\pi }}}}{2}}}} \right)\) are 0

\(\Rightarrow {\rm{r}}\left[ {\rm{n}} \right] = 0\) for all \({\rm{n}}\)

Now, \({\rm{y}}\left[ {\rm{n}} \right] = {\rm{p}}\left[ {\rm{n}} \right]{\rm{*r}}\left[ {\rm{n}} \right] = 0\) for all \({\rm{n}}\)

Thus, \({\rm{y}}\left[ 4 \right] = 0\)

Properties of DTFT Question 8:

What is DTFT of a discrete time signal x[n] = a|n|, |a| < 1?

  1. \(\frac{{1 + {a^2}}}{{1 - 2acos\omega + {a^2}}}\)
  2. \(\frac{{1 + {a^2}}}{{1 + 2acos\omega + {a^2}}}\)
  3. \(\frac{{1 - {a^2}}}{{1 - 2acos\omega + {a^2}}}\)
  4. \(\frac{{1 - {a^2}}}{{1 + 2acos\omega + {a^2}}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{1 - {a^2}}}{{1 - 2acos\omega + {a^2}}}\)

Properties of DTFT Question 8 Detailed Solution

DTFT (x[n]) = X(e)

\(\begin{array}{l} = \mathop \sum \limits_{n = - \infty }^\infty {a^{\left| n \right|}}{e^{ - j\omega n}}\\ = \mathop \sum \limits_{n = - \infty }^{ - 1} {a^{ - n}}{e^{ - j\omega n}} + \mathop \sum \limits_{n = 0}^\infty {a^n}{e^{ - j\omega n}} \end{array}\)

In first part, we take m = -n then we get

\(\begin{array}{l} X\left( {{e^{j\omega }}} \right) = \mathop \sum \limits_{m = 1}^\infty {a^m}{e^{j\omega m}} + \mathop \sum \limits_{n = 0}^\infty {a^n}{e^{ - j\omega n}}\\ = \mathop \sum \limits_{m = 1}^\infty {\left( {a{e^{j\omega }}} \right)^m} + \mathop \sum \limits_{n = 0}^\infty {\left( {a{e^{ - j\omega }}} \right)^n}\\ = \frac{{a{e^{j\omega }}}}{{1 - a{e^{j\omega }}}} + \frac{1}{{1 - a{e^{ - j\omega }}}}\\ = \frac{{a{e^{j\omega }}\left( {1 - a{e^{ - j\omega }}} \right) + 1 - a{e^{j\omega }}}}{{\left( {1 - a{e^{j\omega }}} \right)\left( {1 - a{e^{ - j\omega }}} \right)}}\\ = \frac{{1 - {a^2}}}{{1 - a{e^{j\omega }} - a{e^{ - j\omega }} + {a^2}}}\\ = \frac{{1 - {a^2}}}{{1 - 2a\cos \omega + {a^2}}} \end{array}\)

Properties of DTFT Question 9:

The DTFT of u[n – 2] – u[n – 5] is

  1. e-j2Ω + e-j3Ω + e-j4Ω
  2. ej2Ω + ej3Ω + ej4Ω
  3. e-j2Ω + e-j3Ω + e-j4Ω + e-j5Ω
  4. ej2Ω + ej3Ω + ej4Ω + ej5Ω

Answer (Detailed Solution Below)

Option 1 : e-j2Ω + e-j3Ω + e-j4Ω

Properties of DTFT Question 9 Detailed Solution

x[n] = u [n – 2] – u [n – 5]

= δ[n – 2] + δ[n – 3] + δ[n - 4] 

\(X\left( {{e^{j{\rm{\Omega }}}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j{\rm{\Omega }}n}}\)

= e-j2Ω + e-j3Ω + e-j4Ω

Properties of DTFT Question 10:

Consider an LTI system with impulse response \(h\left[ n \right] = {\alpha ^n}u\left[ n \right]\) with \(\left| \alpha \right| < 1\) and input to the system is \(x\left[ n \right] = {\beta ^n}u\left[ n \right]\) with \(\left| \beta \right| < 1\). The Fourier transform of the output \(Y\left( {{e^{j\omega }}} \right)\) can be written as:

\(Y\left( {{e^{j\omega }}} \right) = \frac{A}{{1 - \alpha {e^{ - j\omega }}}} + \frac{B}{{1 - \beta {e^{ - j\omega }}}}\)

Then, the value of A is

  1. \(\frac{\alpha }{{\alpha - \beta }}\)

  2. \(\frac{{ - \beta }}{{\alpha - \beta }}\)

  3. \(\frac{{ - \alpha }}{{\alpha - \beta }}\)

  4. \(\frac{\beta }{{\alpha - \beta }}\)

Answer (Detailed Solution Below)

Option 1 :

\(\frac{\alpha }{{\alpha - \beta }}\)

Properties of DTFT Question 10 Detailed Solution

\(\begin{array}{l} H\left( {{e^{j\omega }}} \right) = \frac{1}{{1 - \alpha {e^{ - j\omega }}}}\\ X\left( {{e^{j\omega }}} \right) = \frac{1}{{1 - \beta {e^{ - j\omega }}}} \end{array}\)

So that

\(\begin{array}{l} Y\left( {{e^{j\omega }}} \right) = H\left( {{e^{j\omega }}} \right)X\left( {{e^{j\omega }}} \right) = \frac{1}{{\left( {1 - \alpha {e^{ - j\omega }}} \right)\left( {1 - \beta {e^{ - j\omega }}} \right)}}\\ \Rightarrow Y\left( {{e^{j\omega }}} \right) = \frac{A}{{\left( {1 - \alpha {e^{ - j\omega }}} \right)}} + \frac{B}{{\left( {1 - \beta {e^{ - j\omega }}} \right)}} \end{array}\)

Now,

\(\begin{array}{l} A = {\left. {\frac{1}{{\left( {1 - \beta {e^{ - j\omega }}} \right)}}} \right|_{{e^{j\omega }} = \alpha }}\\ \Rightarrow A = \frac{1}{{1 - \frac{\beta }{\alpha }}} = \frac{\alpha }{{\alpha - \beta }} \end{array}\)

Get Free Access Now
Hot Links: teen patti gold downloadable content teen patti joy 51 bonus teen patti game online teen patti wealth