Projection of Vector on a line or direction MCQ Quiz in मराठी - Objective Question with Answer for Projection of Vector on a line or direction - मोफत PDF डाउनलोड करा

Last updated on Apr 14, 2025

पाईये Projection of Vector on a line or direction उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Projection of Vector on a line or direction एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Projection of Vector on a line or direction MCQ Objective Questions

Top Projection of Vector on a line or direction MCQ Objective Questions

Projection of Vector on a line or direction Question 1:

If additive inverse vector of vector pi + 2j - 3k is the vector (abi+bj+pk) then which of the following is true (a > 0) ?

  1. p = 9, b = 4, a = 3/2
  2. p = 9, b = 4, a = 81/4
  3. p = 3, b = 4, a = 81/2
  4. p = 9, b = 4, a = 9/2

Answer (Detailed Solution Below)

Option 2 : p = 9, b = 4, a = 81/4

Projection of Vector on a line or direction Question 1 Detailed Solution

Explanation:

The additive inverse vector of vector pi + 2j - 3k is

-pi - 2j + 3k

So, (abi+bj+pk) = -pi - 2j + 3k

Comparing both sides

ab=p,b=2,p=3

So, p = 9, b = 4

Putting in ab=p we get

4b=9

i.e., 4b = 91

i.e., b = 81/4

Hence p = 9, b = 4, a = 81/4

Option (2) is true.

Projection of Vector on a line or direction Question 2:

The magnitude of the projection of the vector 2i^+3j^+k^ on the vector perpendicular to the plane containing the vectors i^+j^+k^ and i^+2j^+3k^, is

  1. 32
  2. 32
  3. 6
  4. 36

Answer (Detailed Solution Below)

Option 2 : 32

Projection of Vector on a line or direction Question 2 Detailed Solution

Vector perpendicular to plane containing the vectors i^+j^+k^ and i^+2j^+3k^ is parallel to vector

Required magnitude of projection |(2i^+3j^+k^).(i^2j^+k^)||i^2j^+k^|

|26+1|6=36=32

Projection of Vector on a line or direction Question 3:

Let A(0, 3, -3), B(1, 1, 1) and C(2, 0, 3) be three points in space. Then the projection of AB on AC is equal to?

  1. 267
  2. 327
  3. 347
  4. 247
  5. 207

Answer (Detailed Solution Below)

Option 2 : 327

Projection of Vector on a line or direction Question 3 Detailed Solution

Concept Used:

Projection of vector a on b is (a.b)|b|

Calculation

Given:

A(0,3,3)B(1,1,1)C(2,0,3)

AB=BA=(10,13,1(3))=(1,2,4)

AC=CA=(20,03,3(3))=(2,3,6)

AB.AC=(1×2)+(2×3)+(4×6)=2+6+24=32

|AC|=22+(3)2+62=4+9+36=49=7

Projection of AB on AC = (AB.AC)|AC|=327

Projection of AB on AC = 327

Hence option 2 is correct

Projection of Vector on a line or direction Question 4:

The vector projection of AB on CD, where

A ≡ (2, −3, 0), B ≡ (1, -4, -2), C ≡ (4, 6, 8) and D = (7, 0, 10), is

  1. 149(3i^6j^+2k^)
  2. 16(i^j^2k^)
  3. 149(3i^6j^+2k^)
  4. 16(i^j^2k^)

Answer (Detailed Solution Below)

Option 3 : 149(3i^6j^+2k^)

Projection of Vector on a line or direction Question 4 Detailed Solution

Answer : 3

Solution :

AB=i^j^2k^

CD=3i^6j^+2k^

Vector projection of AB on CD 

(ABCD)CD|CD|2 

(3+64)(3i^6j^+2k^)(32+(6)2+22)2 

149(3i^6j^+2k^)

Projection of Vector on a line or direction Question 5:

If a=4i^+6j^ and b=3j^+4k^ then the vector component of a along b is

  1. 18103(3j+4k)
  2. 1825(3j+4k)
  3. 183(3j+4k)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 1825(3j+4k)

Projection of Vector on a line or direction Question 5 Detailed Solution

Concept:

Let u and v be two vectors. Then the vector component of the vector u on v is given by:

 u v|v|(v^)=u v|v|2(v)

Calculation:

Given:

a=4i^+6j^ and b=3j^+4k^

a.b=(4,6,0).(0,3,4)

a.b=18

|a| = √52 

|b|=5 

The component of vector a along b is 1825(3j+4k)

Mistake PointsWe are asked to find the vector component of 'a' along 'b'. If the scalar component was asked, then there would have been only 5 in the denominator.

Projection of Vector on a line or direction Question 6:

Projection vector of a on b is

  1. (a.b|b|2)b
  2. a.b|b|
  3. a.b|a|
  4. (a.b|a|2)b^

Answer (Detailed Solution Below)

Option 2 : a.b|b|

Projection of Vector on a line or direction Question 6 Detailed Solution

Explanation:

The projection vector of a on b is given by a.b|b|.

The correct answer is option 2.

Projection of Vector on a line or direction Question 7:

The projection of vector a = 2î − ĵ + k̂ along b = î + 2ĵ + 2k̂ is

  1. 23
  2. 13
  3. 2
  4. 6

Answer (Detailed Solution Below)

Option 1 : 23

Projection of Vector on a line or direction Question 7 Detailed Solution

Concept:

The projection of vector a  on b is given by ab|b|.

Calculation:

Given  a = 2î − ĵ + k̂  and  b = î + 2ĵ + 2k̂

 ab = ( 2î − ĵ + k̂ )⋅ ( î + 2ĵ + 2k̂ )

= 2 × 1 + (-1) × 2 + 1 × 2 

= 2 - 2 + 2

= 2

|b| = | î + 2ĵ + 2k̂ |

12+22+22

1+4+4=9 

= 3

The projection of vector a  on b  = ab|b|.

23

The projection of vector a = 2î − ĵ + k̂ along b = î + 2ĵ + 2k̂ is 2/3.

The correct answer is option 1.

Projection of Vector on a line or direction Question 8:

The magnitude of the projection of the vector 2î + 3ĵ + k̂ on the vector perpendicular to the plane containing the vectors î + ĵ + k̂ and î + 2ĵ + 3k̂, is

  1. 32
  2. 32
  3. 6
  4. 36

Answer (Detailed Solution Below)

Option 2 : 32

Projection of Vector on a line or direction Question 8 Detailed Solution

Concept -

Use of normal vector  and projection vector

projection of a on b is =|a.b|b||

Solution

Normal vector to the plane to plane containing i^+j^+k^ and i^+2j^+3k^ is 

n=(i^+j^+k^)×(i^+2j^+3k^)

 n=(i^2j^+k^)

Projection of (2i^+3j^+k^) on n = =|(2i^+3j^+k^).(i^2j^+k^)1+4+1|

36=32

Hence the final answer is option 2.

Get Free Access Now
Hot Links: teen patti boss teen patti master app teen patti all games teen patti 50 bonus teen patti real cash