Inequalities MCQ Quiz in मराठी - Objective Question with Answer for Inequalities - मोफत PDF डाउनलोड करा

Last updated on Apr 16, 2025

पाईये Inequalities उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Inequalities एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Inequalities MCQ Objective Questions

Top Inequalities MCQ Objective Questions

Inequalities Question 1:

How many numbers in the set {-4, -3, 0, 2} satisfy the conditions |y - 4| < 6 and |y + 4| < 5?

  1. 3
  2. 2
  3. 4
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Inequalities Question 1 Detailed Solution

Concept:

  • The Modulus Function '| |' is defined as: |x|={   x,x0x,x<0.
  • If a > b, then a + x > b + x for any x.
  • If a > b, then ax > bx for positive x and ax < bx for negative x.

 

Calculation:

First let us solve both the equations for the values of y.

For |y - 4| < 6:

If y - 4 ≥ 0 ⇒ y ≥ 4, then:

y - 4 < 6

⇒ y < 10.

If y - 4 < 0 ⇒ y < 4, then:

-(y - 4) < 6

⇒ y - 4 > -6

⇒ y > -2.

∴ The solution in this case is [4, 10) ∪ (-2, 4) = (-2, 10).

For |y + 4| < 5:

If y + 4 ≥ 0 ⇒ y ≥ -4, then:

y + 4 < 5

⇒ y < 1.

If y + 4 < 0 ⇒ y < -4, then:

-(y + 4) < 5

⇒ y + 4 > -5

⇒ y > -9.

∴ The solution in this case is [-4, 1) ∪ (-9, -4) = (-9, 1).

Finally, the values of y which satisfy both the in-equations will be (-2, 10) ∩ (-9, 1) = (-2, 1).

Now, the numbers in the set {-4, -3, 0, 2} which are also in the solution set (-2, 1) are: {0} only.

∴ Only 1 number in the set {-4, -3, 0, 2} satisfies the conditions |y - 4| < 6 and |y + 4| < 5.

Inequalities Question 2:

The smallest negative integer satisfying both the quadratic inequalities x2 < 4x + 77 and x2 > 4 is 

  1. -1
  2. -6
  3. -2
  4. -7

Answer (Detailed Solution Below)

Option 2 : -6

Inequalities Question 2 Detailed Solution

Explanation:

Given that, x2 < 4x + 77 and x2 > 4

x2 - 4x - 77 < 0

⇒ x2 - 11x + 7x - 77 < 0

⇒ x(x - 11) + 7(x - 11) < 0

⇒ (x + 7)(x - 11) < 0

∴ -7 < x < 11

x ∈ (-7, 11)...(1)

Also, x2 > 4

⇒ x2 - 4 > 0

⇒ (x + 2)(x - 2) > 0

∴ x < -2 or x > 2

xϵ(,2)(2,)...(2)

Using (1) and (2), Mark these regions on a real line and take their intersection.

The intersection of the two regions is given by -7 < x < -2 or 2 < x < 11

We are to find the smallest negative integer.

Hence we choose -7 < x < -2.

Therefore all negative integers -6 to -3 will satisfy the above and the smallest amongst these is -6.

∴ The correct option is (2)

Inequalities Question 3:

If |x - 4|/(x - 4) ≥ 0, then:

  1. x ϵ (- ∞, 4]
  2. x ϵ (- ∞, 4)
  3. x ϵ (4, ∞)
  4. x ϵ [4, ∞)

Answer (Detailed Solution Below)

Option 3 : x ϵ (4, ∞)

Inequalities Question 3 Detailed Solution

Calculation

Given that

|x - 4|/(x - 4) ≥ 0

1. Case 1: (x - 4 > 0) (i.e., (x > 4))

When (x > 4),

⇒|x - 4| = x - 4. Substituting this in the inequality, we get:

⇒ x4x4=1

Since 10this condition is satisfied for (x > 4).

2. Case 2: (x - 4 < 0) (i.e., (x < 4)) 

When (x < 4)

⇒|x - 4| = -(x - 4) = 4 - x. Substituting this into the inequality, we get:

⇒ 4xx4=(x4)x4=1

Since  10  is not true, this condition is not satisfied for (x < 4).

3. Case 3: (x = 4)

When (x = 4),

⇒ |x4|x4 = 00, which is undefined.

Therefore, (x = 4) should not be included in the solution set.

From above,

The inequality is satisfied only when (x > 4)

Option 3 is correct

Inequalities Question 4:

If x satisfies the inequality

|x - 1| + |x - 2| + |x - 3| ≥ 6

then

  1. 0 ≤ x ≤ 4
  2. x ≤ 0 or x ≥ 4
  3. x ≤ -2 or x ≥ 4 
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : x ≤ 0 or x ≥ 4

Inequalities Question 4 Detailed Solution

Concept:

Consider a function f(x) = |x| then

f(x) = x if x > 0 and

f(x) = -x if x < 0

Calculation:

Given that,

|x - 1| + |x - 2| + |x - 3| ≥ 6

Case:1     x < 1

|x - 1|,  |x - 2| and |x - 3| will open as negative.

⇒ -(x - 1) - (x - 2) - (x - 3) ≥ 6

⇒ -3x + 6 ≥ 6

⇒ -3x ≥ 0 or x ≤ 0

Case:2     1 < x < 2

⇒ x - 1 - (x - 2) - (x - 3) ≥ 6

⇒ - x + 4 ≤ 6

⇒ x ≤ -2

As, we have taken x ∈ (1, 2) and x is come out to be in (-∞, -2].

Hence, no value will be possible.

Case:3  2 < x < 3

⇒ x - 1 + x - 2 - x + 3 ≥ 6

⇒ x ≥ 6

No value will will be possible.

Case:4     x > 3

⇒  x - 1 + x - 2 + x - 3 ≥ 6

⇒ 3x - 6 ≥ 6

x ≥ 4

By taking union of all solution,

x ∈ (-∞, 0] ∪ [4, ∞) 

The solution of inequality is x ≤ 0 or x ≥ 4.

Inequalities Question 5:

The value of x satisfying the inequality(x4)1991(x1)2020x47(x+3)1010

  1. x ∈ (0, 3) U [ 4, ∞) U {1}
  2. x ∈ (0, 3) U [ -4, ∞) U {3}
  3. x ∈ (-3, 4) U [ 4, ∞) U {1}
  4. x ∈ (-3, 0) U [ 4, ∞) U {1}

Answer (Detailed Solution Below)

Option 4 : x ∈ (-3, 0) U [ 4, ∞) U {1}

Inequalities Question 5 Detailed Solution

Concept:

Steps to find the solutions of inequality by the wavy curve method:

  1. Find the roots of the numerator and denominator.
  2. Plot those according to their values on the number line.
  3. Find the sign (positive or negative) of the segments separated by the roots and answer according to the condition of the question.
 

Calculations:

Given inequality is (x4)1991(x1)2020x47(x+3)1010

Roots of numerator:

(x - 4)1991 ≥ 0

⇒ (x - 4) ≥ 0

Root = 4

(x - 1)2020 ≥ 0

⇒ (x - 1) ≥ 0

Root = 1

Roots of Denominator:

x47 ≥ 0 

Root = 0

(x + 3)101 ≥ 0

⇒ (x + 3) ≥ 0

Root = - 3

Now,

Using wavy curve method:

F1 Abhishek Madhuri 19.08.2021 D4

∴ x ∈ (-3, 0) U [ 4, ∞) U {1}

Inequalities Question 6:

The greatest possible value of n could be if 27n < 1010, given that log 3 = 0.4771 and n ϵ N:

  1. 6
  2. 7
  3. 8
  4. 9

Answer (Detailed Solution Below)

Option 1 : 6

Inequalities Question 6 Detailed Solution

Concept:

Log of a power: log xa = a.log x      ---(1)

  • log x + log y = log xy
  • log (x/y) = log x - log y
  • log (e) = 1
  • log (1) = 0
  • log 10 = 1 
  • log (1/x) = - log x

Calculation:

We have,

27n < 1010  

⇒ 33n < 1010

Taking log both sides, we get,

⇒ 3n.log 3 < 10.log 10

⇒ 3n × 0.4771 < 10      (∵ log 10 = 1 and log 3 = 0.4771)

⇒ n × 1.4313 < 10

⇒ n < 10/1.4313

⇒ n < 6.9867

⇒ n = 6

Hence, the greatest possible value of n = 6.

Inequalities Question 7:

The real values of x satisfying the inequalities:

log0.5(x225)log0.5(x5)<log0.53

  1. x < 2
  2. x > 5
  3. x > 1
  4. x < 5

Answer (Detailed Solution Below)

Option 2 : x > 5

Inequalities Question 7 Detailed Solution

Concept:

Solving logarithmic inequalities, it is important to understand that the direction of inequality changes if the base of the logarithmic is less than 1.

If, loga x < loga y

Then,

  • x < y, when 'a' is more than 1.
  • x > y, when 'a' is less than 1. 

Formula used:

log x + log y = log xy

  • log xa = a.log x
  • log (x/y) = log x - log y
  • log (e) = 1
  • log (1) = 0
  • log 10 = 1 
  • log (1/x) = - log x

Calculation:

Domain: x2 - 25 > 0 or x - 5 > 0

⇒ x > 5      ---(1)

Now, log0.5(x225)log0.5(x5)<log0.53

log0.5(x225)<log0.53+log0.5(x5)

log0.5(x225)<log0.53(x5)      (∵ log x + log y = log xy)

⇒ x2 - 25 > 3 (x - 5)      (Direction changed as base is less than 1)

⇒ x2 - 25 > 3x - 15

⇒ x2 - 3x - 10 > 0

⇒ (x - 5) (x + 2) > 0

⇒ x > 5 or x > -2      ---(2)

From equation (1) & (2), we get,

x > 5

Hence, x > 5.

Inequalities Question 8:

Solve the system of inequalities (x + 5) - 7(x - 2) > 4x + 9, 2(x - 3) - 7(x + 5) < 3x - 9

  1. - 4 < x < 1
  2. - 4 < x < 4
  3. - 9/4 < x < 1
  4. -1 < x < 1

Answer (Detailed Solution Below)

Option 1 : - 4 < x < 1

Inequalities Question 8 Detailed Solution

Calculation:

Given:

(x + 5) - 7(x - 2) > 4x + 9, 2(x - 3) - 7(x + 5) < 3x - 9

⇒ (x + 5) - 7(x - 2) > 4x + 9

⇒ x + 5 - 7x + 14 > 4x + 9

⇒ - 6x + 19 > 4x + 9

⇒ - 6x - 4x > 9 - 19

⇒ - 10x > - 10 

⇒ x < 1

⇒ x € (- ∞, 1)

2(x - 3) - 7(x + 5) < 3x - 9

⇒ 2x - 6 - 7x - 35 < 3x - 9

⇒ - 5x - 41 < 3x - 9

⇒ -5x - 3x < 41 - 9

⇒ - 8x < 32 

⇒ - x < (32/8) = 4

⇒ x > - 4

⇒ x € (- 4, ∞)

Hence the solution set is 

[- 4, ∞) ∩ (- ∞, 1] = [- 4, 1]

Which means - 4 < x < 1

Inequalities Question 9:

If x2 + y2 + z2 = 5, then maximum value of (x + 2y + 3z)2 is

  1. 70
  2. 14
  3. 75
  4. √14 

Answer (Detailed Solution Below)

Option 1 : 70

Inequalities Question 9 Detailed Solution

Concept:

Cauchy - Schwarz Inequality:

a1, a2, b1, b2 are non-zero real numbers

If a1, . . . , an and b1, . . . , bn are real numbers, then

(a1a2 + b1b1 + ....anbn)2 ≤ (a12 + a22 + ...an2)(b12 + b22 + ...bn2)

(i=1naibi)2i=1nai2i=1nbi2

 

Calculation:

Given that,

x2 + y2 + z2 = 5    ---(1)

Let,

P = (x + 2y + 3z)2

⇒ P = (1.x + 2.y + 3.z)2

Applying Cauchy - Schwarz Inequality

(a1a2 + b1b1 + ....anbn)2 ≤ (a12 + a22 + ...an2)(b12 + b22 + ...bn2)

⇒ (x + 2y + 3z)2 ≤ (12 + 22 + 32)(x2 + y2 + z2)

⇒ (x + 2y + 3z)2 ≤ 14 × 5    [From equation (1)]

⇒ (x + 2y + 3z)2 ≤ 70

Hence, required maximum value is 70.

Inequalities Question 10:

The domain of the function y=xx23x+2 is

  1. (1, ∞)
  2. (-∞, 2)
  3. (-∞, 1) ∪ (2, ∞)
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : (-∞, 1) ∪ (2, ∞)

Inequalities Question 10 Detailed Solution

Concept:

1. Function y = √x is defined for x ≥ 0

2. Polynomial y = p/q is defined for q ≠ 0 

Calculation:

Given that,

y=xx23x+2

As discussed above, y is defined for

x2 - 3x + 2 > 0

⇒ (x - 2)(x - 1) > 0

This represents, a product of the two-term is positive, which can be possible in two cases.

Case:1 (x - 2) and (x - 1), both positive

⇒ x > 2 or x ϵ (2, ∞)     ----(1)

Case:2 (x - 2) and (x - 1), both negative

⇒ x < 1 or x ϵ  (-∞, 1)      ----(2)

Hence, from (1) & (2)

⇒ x ϵ (-∞, 1) ∪ (2, ∞)

Get Free Access Now
Hot Links: teen patti 50 bonus teen patti master game teen patti mastar