Operations on Relations MCQ Quiz in मल्याळम - Objective Question with Answer for Operations on Relations - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 22, 2025

നേടുക Operations on Relations ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Operations on Relations MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Operations on Relations MCQ Objective Questions

Top Operations on Relations MCQ Objective Questions

Operations on Relations Question 1:

Let P(n)=n2 + n is odd, then P(n) = P(n + 1)∀n and P(1) is not true, then which of the following is true?

  1. P(n) is false for all n ∈ N.
  2. P(n) is true for all n.
  3. P(n) is true for all n ∈ Z.
  4. P(n) is true for all n ≥ N.

Answer (Detailed Solution Below)

Option 1 : P(n) is false for all n ∈ N.

Operations on Relations Question 1 Detailed Solution

Given,

P(n) = n2 + n is odd      ---(1)

P(n) = P(n + 1) ∀n

P(1) = not true

P(n) = n(n + 1)

Thus ,P(n) is a product of two consecutive numbers & one of them must be odd & other will be even & the product of one odd & one even number will always results in even number, thus P(n) will always be even 

Thus P(n) is false for all n ∈ N

Operations on Relations Question 2:

Let R be a relation such that R = {(1, 2), (9, 7), (2, 5), (2, 3), (7, 3)} then what will be R-1OR-1 

  1. {(3, 1), (5, 1) (3, 9), (7, 3)}
  2. {(3, 1), (5, 1), (7, 3)}
  3. {(3, 1), (5, 1) (3, 9)}
  4. {(3, 1), (3, 9), (7, 3)}

Answer (Detailed Solution Below)

Option 3 : {(3, 1), (5, 1) (3, 9)}

Operations on Relations Question 2 Detailed Solution

Concept:

If A, B and C are three sets such that  \(R\subseteq A\times B\) and \(S\subseteq B\times C\) then (SOR)-1 = R-1 O S-1. It is clear that if a R b, b S c ⇒ a SOR c.

Calculation:

We know that  (ROR)-1 = R-1OR-1

Domain(R) = {1, 2, 7, 9} and Range(R) = {2, 3, 5, 7}

we see that,

1 → 2 → 3 ⇒ (1, 3) ∈ ROR

1 → 2 → 5 ⇒ (1, 5) ∈ ROR

9 → 7 → 3 ⇒ (9, 3) ∈ ROR

Hence ROR = {(1, 3), (1, 5), (9, 3)}

(ROR)-1 = {(3, 1), (5, 1), (3, 9)}

 R-1OR-1 = {(3, 1), (5, 1), (3, 9)}

Get Free Access Now
Hot Links: rummy teen patti teen patti download apk teen patti real cash game happy teen patti