Inverse of a Matrix MCQ Quiz in मल्याळम - Objective Question with Answer for Inverse of a Matrix - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 4, 2025

നേടുക Inverse of a Matrix ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Inverse of a Matrix MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Inverse of a Matrix MCQ Objective Questions

Top Inverse of a Matrix MCQ Objective Questions

Inverse of a Matrix Question 1:

If 3A=[122212221]thenA1=___

  1. 2 AT
  2. AT
  3. 3 AT
  4. 13AT

Answer (Detailed Solution Below)

Option 2 : AT

Inverse of a Matrix Question 1 Detailed Solution

Let B=3A=[122212221]

|B|=(81+8)(444)=15+12=27

[1221212221221221]Adj(B)=[366636663]B1=127×3×[122212221](3A)1=19[3AT]A1=AT

Inverse of a Matrix Question 2:

If A=13(122212221) then (AAT)-1 = ?

  1. I
  2. 5I
  3. 3I
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : I

Inverse of a Matrix Question 2 Detailed Solution

Explanation:

Given matrix A=13(122212221)

Now its transpose will be 

AT=13(122212221)

The product will be 

AAT = 13(122212221)13(122212221)

Here, AAT19(900090009)

⇒ AAT = I;

∴ (AAT)-1 = (I)-1 = I;

Inverse of a Matrix Question 3:

If A=[122130021], then A-1 is 

  1. [321112115]
  2. [326112225]
  3. [326110205]
  4. none of these

Answer (Detailed Solution Below)

Option 4 : none of these

Inverse of a Matrix Question 3 Detailed Solution

Concept:

The inverse of square matrix A exists only when |A| ≠ 0

For a square matrix A, A-1 1|A|adj(A), where adj(A) is the adjoint of A.

Solution:

Given, A=[122130021]

Determinant lAl = [122130021]

= 1(3 - 0) - 2(- 1 - 0) - 2(- 2 - 0)

= 9 

∴ Inverse of matrix A exists.

In order to find adjoint of A ,lets find minor of matrix of A

M[|3021||1001||1302||2221||1201||1202||2230||1210||1213|]

[312612625]

C0-factors of A is 

C[(1)1+1(3)(1)1+2(1)(1)1+3(2)(1)1+4(6)(1)1+5(1)(1)1+6(2)(1)1+7(6)(1)1+8(2)(1)1+9(5)]

[312612625]

Taking Transpose,

CA[366112225]=adj(A)

As we know that,

A-1 1|A|adj(A)

19[366112225] = [132323191929292959]

∴ The inverse of A is, A-1 [132323191929292959]

The correct answer is Option 4.

Inverse of a Matrix Question 4:

Inverse of matrix [010001100] is

  1. [001100010]
  2. [100001010]
  3. [100010001]
  4. [001010100]

Answer (Detailed Solution Below)

Option 1 : [001100010]

Inverse of a Matrix Question 4 Detailed Solution

Explanation:

A1=adj(A)|A|

|A|=|010001100|

|A|= 0 (0 - 0) – 1 (0 - 1) + 0 (0 - 0)

|A| = 1

Now,

adj(A)=[001100010]

A1=1|A|adj(A) 

A1=11[001100010]

Inverse of a Matrix Question 5:

Determinant of a square matrix is always

  1. a square matrix
  2. a column matrix
  3. a row matrix
  4. a number

Answer (Detailed Solution Below)

Option 4 : a number

Inverse of a Matrix Question 5 Detailed Solution

a number

A determinant is a real number associated with every square matrix.

Inverse of a Matrix Question 6:

If A=[122130021], then A-1 is 

  1. [321112115]
  2. [326112225]
  3. [326110205]
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Inverse of a Matrix Question 6 Detailed Solution

Concept:

The inverse of square matrix A exists only when |A| ≠ 0

For a square matrix A, A-1 1|A|adj(A), where adj(A) is the adjoint of A.

Solution:

Given, A=[122130021]

Determinant lAl = [122130021]

= 1(3 - 0) - 2(- 1 - 0) - 2(- 2 - 0)

= 9 

∴ Inverse of matrix A exists.

In order to find adjoint of A ,lets find minor of matrix of A

M[|3021||1001||1302||2221||1201||1202||2230||1210||1213|]

[312612625]

C0-factors of A is 

C[(1)1+1(3)(1)1+2(1)(1)1+3(2)(1)1+4(6)(1)1+5(1)(1)1+6(2)(1)1+7(6)(1)1+8(2)(1)1+9(5)]

[312612625]

Taking Transpose,

CA[366112225]=adj(A)

As we know that,

A-1 1|A|adj(A)

19[366112225] = [132323191929292959]

∴ The inverse of A is, A-1 [132323191929292959]

 

Inverse of a Matrix Question 7:

If a matrix is given by A = [123045001] , then the determinant of A-1 is:

  1. 3
  2. 13
  3. 14
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 14

Inverse of a Matrix Question 7 Detailed Solution

Concept:

Determinant of (A-1)1Determinant of A

Where, Determinant of A = 1(4 × 1 - 5 × 0) - 2(0 - 0) + 3(0 - 0) = 4

Calculation:

Given:

Determinant of A = 4 

So, Determinant of (A-1) = 1Determinant of A = 14

Additional Information

A-1 = adjADeterminant of A

adj.A = Transverse of matrix [A11A12A13A21A22A23A31A32A33]

A11 = Aij = (-1)× (cross multiplication of remaining column and row) = (-1)n × (A22A23A32A33)

Where, n = (i + j)

We follow the same procedure for the A11, A12, A13, .......as so on. Also find the determinant of matrix A. Then applies the given formula after that we finally obtain the A-1.

Inverse of a Matrix Question 8:

 Let A and B be matrices of order 3. Which of the following is true?

  1. (AB)-1 = A-1B-1
  2. (AB)-1 = AB-1
  3. (BA)-1 = B-1
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above

Inverse of a Matrix Question 8 Detailed Solution

Concept:

Apply element-wise inversion i.e multiply by the inverse of the same element to make it an identity matrix until the desired objective is reached.

Calculation:

Let (BA)-1 = K

Multiply by the BA on both sides, in the same order

(BA)(BA)-1 = (BA)K

I = BAK   {∵ (A)(A-1) = I}

Multiply B-1 on both the sides

B-1I = B-1BAK

B-1 = AK

Multiply A-1 on both sides

A-1B-1 = A-1AK

A-1B-1 = K

so, (BA)-1 = A-1B-1  {∵ (BA)-1 = K}

Inverse of a Matrix Question 9:

The inverse of (3175) is

  1. (5173)
  2. (5173)
  3. 18(5173)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 18(5173)

Inverse of a Matrix Question 9 Detailed Solution

Given: (3175)

Concept used:

The inverse of matrix (A) = adjoint of A / det(A) 

or (abcd)(-1) = (dbca)/ (Determinant A)

Calculations:

The inverse of (3175) = (5173)/ (Determinant of given matrix)

⇒ (5173)/ (15 - 7)

⇒ 1/8 ×  (5173)

Hence, The correct option is 3.

 

Inverse of a Matrix Question 10:

A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is

  1. 1k2I
  2. 1k3I
  3. 1kI
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 1kI

Inverse of a Matrix Question 10 Detailed Solution

Since A is a scalar matrix, we have A=(k000k000k)

|A|=k3

adjA=(k2000k2000k2)A1=1|A|(adjA)=1k3(k2000k2000k2)1k(100010001)=1kI

Get Free Access Now
Hot Links: teen patti plus dhani teen patti teen patti dhani