Evaluation of derivatives MCQ Quiz in मल्याळम - Objective Question with Answer for Evaluation of derivatives - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Apr 15, 2025
Latest Evaluation of derivatives MCQ Objective Questions
Top Evaluation of derivatives MCQ Objective Questions
Evaluation of derivatives Question 1:
Differentiate a function f(x) = \(\rm \left(x+{1\over x}\right)^2 \)
Answer (Detailed Solution Below)
Evaluation of derivatives Question 1 Detailed Solution
Concept:
- \(\rm d\over dx\)xn = nxn-1
- \(\rm d\over dx\)sin x = cos x
- \(\rm d\over dx\)cos x = -sin x
- \(\rm d\over dx\)ex = ex
- \(\rm d\over dx\)ln x = \(\rm1\over x\)
- \(\rm d\over dx\)(ax + b) = a
- \(\rm d\over dx\)tan x = sec2 x
Chain Rule: If y is a function of u and u is a function of x
- \(\rm {dy\over dx} = {dy\over du}\times {du\over dx}\)
Calculation:
f(x) = \(\rm \left(x+{1\over x}\right)^2 \)
f(x) = \(\rm \left(x^2+{1\over x^2}+2\right) \)
f(x) = x2 + x-2 + 2
Differentiating w.r.t. x
f'(x) = \(\rm d\over dx\)f(x)
f'(x) = \(\rm d\over dx\)(x2 + x-2 + 2)
f'(x) = \(\rm d\over dx\)x2 + \(\rm d\over dx\)x-2 + \(\rm d\over dx\)2
f'(x) = (2x) + (-2x-3) + 0
f'(x) = \(\boldsymbol{\rm 2\left(x - {1\over x^3}\right)}\)
Evaluation of derivatives Question 2:
If y = sin(2sin-1 x), then \(\frac{{dy}}{{dx}}\)=
Answer (Detailed Solution Below)
Evaluation of derivatives Question 2 Detailed Solution
Concept:
If x = f(t) and y = g(t)
then \(\frac{{dy}}{{dx}}\) = \({{dy \over dt}\over {dx \over dt}}\)
Calculation:
Given, y = sin(2sin-1 x),
let x = sin θ ⇒ y = sin (2sin-1(sin θ)),
⇒ y = sin 2θ
Differentiating x and y with respect to θ,
⇒ \(dx \over dθ\) = cos θ and \(dy \over dθ\) = 2cos 2θ
⇒ \(\frac{{dy}}{{dx}}\) = \({{dy \over dθ}\over {dx \over dθ}} = {2 cos 2θ \over cos θ}\)
Now sin θ = x ⇒ cos θ = \(\sqrt{1 - x^2}\)
and cos 2θ = 1 - 2sin2θ = 1 - 2x2
⇒ \(\frac{{dy}}{{dx}} = 2{\cos2\theta \over \cos \theta} \) = \(\frac{{2 - 4{x^2}}}{{\sqrt {1 - {x^2}} }}\)
∴ The correct answer is option (1).
Evaluation of derivatives Question 3:
Find derivative of xx with respect to x
Answer (Detailed Solution Below)
Evaluation of derivatives Question 3 Detailed Solution
Concept:
Formula:
log mn = n log m
\(\rm \frac{d(uv)}{dx} = v\frac{du}{dx}+u\frac{dv}{dx}\)
\(\rm \frac{d\log x}{dx} = \frac{1}{x}\)
Calculation:
Let y = xx
Taking log both sides, we get
⇒ log y = log xx
⇒ log y = x log x (∵ log mn = n log m)
Differentiating with respect to x, we get
\(\rm \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log x \frac{dx}{dx} + x \frac{d\log x}{dx}\\\Rightarrow \frac{dy}{dx} = y \left(\log x + x \times \frac{1}{x} \right )\\\therefore \frac{dy}{dx} = x^x (1+\log x)\)
Evaluation of derivatives Question 4:
Find all values of x in the interval [0, 2π] such that sin x = sin 2x?
Answer (Detailed Solution Below)
Evaluation of derivatives Question 4 Detailed Solution
Concept-
sin 2x = 2sin x cos x.
Calculation-
As sin x = sin 2x
⇒ sin 2x - sin x = 0
⇒ 2 sin x cos x - sin x = 0
⇒ sin x (2cos x - 1) = 0
So either sin x = 0 , in interval [0, 2π] when x = 0, π, 2π
or 2cos x -1 = 0, i.e cos x = \( {1} \over {2}\) in interval [0,2π] when x = \(\frac{ π } {3} ,\frac { 5π } {3}\)
∴ total values of x in interval [0, 2π] is 5.
Evaluation of derivatives Question 5:
If y = \(\rm {\rm{\;}}\frac{{\left( {sinx - cosx} \right)}}{{sin2x}} \), find \(\rm \frac{{dy}}{{dx}}\)
Answer (Detailed Solution Below)
Evaluation of derivatives Question 5 Detailed Solution
Concept used:
Trigonometry formula
sin 2x = 2sin x cos x
Calculation:
y = \(\rm {\rm{\;}}\frac{{\left( {sinx - cosx} \right)}}{{sin2x}}\)
y = \(\rm \frac{{\left( {sinx - cosx} \right)}}{{2.sinx.cosx}}\)
⇒ y = \(\rm \frac{{sinx}}{{2.sinx.cosx}} - \;\frac{{cosx}}{{2.sinx.cosx}}\)
⇒ y = \(\rm \left( {\frac{1}{{2cosx}}} \right)\; - \left( {\frac{1}{{2sinx}}} \right)\)
⇒ y = \(\frac{1}{2}\) (secx - cosecx)
Differentiate both sides, we get
⇒ \(\rm \frac{{dy}}{{dx}} = \frac{1}{2}\left[ {\frac{{d\left( {secx} \right)}}{{dx}} - \frac{{d\left( {cosecx} \right)}}{{dx}}} \right]\)
⇒ \(\rm \frac{{dy}}{{dx}} = \frac{1}{2}\left( {secx.tanx + cosecx.cotx} \right)\)
Evaluation of derivatives Question 6:
If \(\rm y=x^{\sec^2x}\times\frac{1}{x^{\tan^2x}}\), then \(\rm \frac{dy}{dx}=?\)
Answer (Detailed Solution Below)
Evaluation of derivatives Question 6 Detailed Solution
Given:
\(\rm y=x^{\sec^2x}\times\frac{1}{x^{\tan^2x}}\)
Concept:
Use trigonometric identity \(\rm \sec^2x-\tan^2x=1\)
And use derivative rule \(\rm \frac{d}{dx}x^n=n x^{n-1}\)
Calculation:
\(\rm y=x^{\sec^2x}\times\frac{1}{x^{\tan^2x}}\)
\(\rm \implies y=x^{\sec^2x}\times x^{-\tan^2x}\)
\(\rm \implies y=x^{\sec^2x-\tan^2x}\)
\(\rm \implies y=x\)
Now differentiate with respect to \(\rm x\)
we get
\(\rm \frac{dy}{dx}=1\)
Hence the option (4) is correct.
Evaluation of derivatives Question 7:
The derivative of \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) with respect to tan-1x is:
Answer (Detailed Solution Below)
Evaluation of derivatives Question 7 Detailed Solution
Given:
The derivative of \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) with respect to tan-1x is:
Concept:
The derivative of f(x) with respect to g(x) is \(\rm \frac{f'(x)}{g'(x)}\)
Calculation:
Let \(f(x)=\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) and g(x) = tan-1x
Put x = tanθ in f(x) then
\(\rm f(x)=\tan^{-1}\left(\frac{sec\theta-1}{tan\theta}\right)\)
\(\rm f(x)=\tan^{-1}\left(\frac{1-cos\theta}{sin\theta}\right)\)
\(\rm f(x)=\tan^{-1}\left(\frac{sin^2\frac{\theta}{2}}{2sin\frac{\theta}{2}cos\frac{\theta}{2}}\right)\)
\(\rm f(x)=\tan^{-1}\left(\tan\frac{\theta}{2}\right)\)
\(\rm f(x)=\frac{\theta}{2}\)
\(\rm f(x)=\frac12tan^{-1}x\)
On differentiating .
\(\rm f'(x)=\frac{1}{2}\cdot\frac{1}{1+x^2}\)
we have g(x) = tan-1x
On differentiating
\(\rm g'(x)=\frac{1}{1+x^2}\)
Now the derivative of f(x) with respect to g(x) is
\(\rm \frac{f'(x)}{g'(x)}=\frac{\frac{1}{2}\cdot\frac{1}{1+x^2}}{\frac{1}{1+x^2}}=\frac{1}{2}\)
Hence the option (2) is correct.
Evaluation of derivatives Question 8:
If ex + ey = ex + y, then \(\frac{dy}{dx}\) is :
Answer (Detailed Solution Below)
Evaluation of derivatives Question 8 Detailed Solution
Calculation:
Given:
ex + ey = ex + y = exey
e-y + e-x = 1
Differentiating both sides with respect to x, we get
-e-y\(\frac{dy}{dx}\) - e-x = 0
\(\frac{dy}{dx}\) = \(\frac{e^{-x}}{-e^{-y}}\)
\(\frac{dy}{dx}\) = -ey - x
Evaluation of derivatives Question 9:
If \(\rm x^m y^n =xya^{m-n}\), then what is \(\rm \frac{dy}{dx}\) equal to?
Where a is constant.
Answer (Detailed Solution Below)
Evaluation of derivatives Question 9 Detailed Solution
Concept:
Suppose that we have two functions f(x) and g(x) and they are both differentiable.
- Chain Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)} \right] = {\rm{\;f'}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{g'}}\left( {\rm{x}} \right)\)
- Product Rule: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right)} \right] = {\rm{\;f'}}\left( {\rm{x}} \right){\rm{\;g}}\left( {\rm{x}} \right) + {\rm{f}}\left( {\rm{x}} \right){\rm{\;g'}}\left( {\rm{x}} \right)\)
- log ab = b log a
Calculation:-
\(\rm x^m y^n =xya^{m-n}\), where a is constant
Taking log both sides, we get
⇒ \(\rm \log (x^m y^n) =\log (xya^{m-n})\)
⇒ log xm + log yn = log x + log y + log am-n
⇒ m log x + n log y = log x + log y + (m - n) log a
Differentiate both sides w.r.t x, we get
⇒ \(\rm \frac{m}{x}+\frac{n}{y}\frac{\mathrm{d} y}{\mathrm{d} x}= \frac 1 x + \frac 1 y \frac {dy}{dx} + 0\) [∵ \(\rm \frac{d \;\text{constant}}{dx} = 0\) ]
⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x}\left [ \frac{n}{y}-\frac{1}{y} \right ]= \left [ \frac{1}{x}- \frac{m}{x} \right ]\)
⇒ \(\rm \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{-(m-1)y}{(n-1)x}\) .
The correct option is 1.
Evaluation of derivatives Question 10:
If xy = ex - y then \(\frac{{dy}}{{dx}}\) is equal to
Answer (Detailed Solution Below)
Evaluation of derivatives Question 10 Detailed Solution
Concept:
Quotient rule of differentiation:
\(\rm \frac {d \left(\frac {u}{v}\right) }{dx}= \frac {v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}\)
Calculation:
We have xy = ex - y
Taking log on both sides
⇒ y log x = (x - y) log e
⇒ y log x = x - y
⇒ (log x + 1)y = x
⇒ y = \(\rm x\over\log x+1\)
Differentiating with respect to x, we get
⇒ \(\rm {dy\over dx} = {(\log x+1)-x({1\over x})\over(\log x+1)^2}\)
⇒ \(\rm {dy\over dx} = {(\log x+1-1)\over(\log x+1)^2}\)
⇒ \(\boldsymbol{\rm {dy\over dx} = {\log x\over(\log x+1)^2}}\)
∴ The correct answer is \(\boldsymbol{\rm {dy\over dx} = {\log x\over(\log x+1)^2}}\).