Combinatorics MCQ Quiz in मल्याळम - Objective Question with Answer for Combinatorics - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 20, 2025

നേടുക Combinatorics ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Combinatorics MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Combinatorics MCQ Objective Questions

Top Combinatorics MCQ Objective Questions

Combinatorics Question 1:

Let an denote the number of all n-digit positive integers formed by the digits 0, 1 or both such that no consecutive digits in them are 0. Let bn= the number of such n-digit integers ending with digit 1 and cn= the number of such n-digit integers ending with digit 0. The value of b6 is

  1. 7
  2. 8
  3. 9
  4. 11

Answer (Detailed Solution Below)

Option 2 : 8

Combinatorics Question 1 Detailed Solution

To find b6, we have to find all 6 digit numbers ending with '1' such that no consecutive digits are '0'. Some of the examples possible are :

1. 1 0 1 1 1 1

2. 1 0 1 0 1 1

3. 1 1 1 1 1 1

Three cases possible:

1. One zero- It can be placed in any of the four places. So, we get '4' such six digit numbers.

2. Two zeros- We get '3' such six digit numbers possible.

3. No zeros- We get only '1' such six digit number.

Hence b6=4+3+1=8

Combinatorics Question 2:

a12

  1. a11+a10
  2. a11a10
  3. a11+2a10
  4. 2a11+a10

Answer (Detailed Solution Below)

Option 1 : a11+a10

Combinatorics Question 2 Detailed Solution

an+2an+1an=pαn(α2α1)+qβn(β2β1)=0

So,

a12a11a10=0

a12=a11+a10

Combinatorics Question 3:

What is the minimum number of students needed in a class to guarantee that there are at least 6 students whose birthdays fall in the same month?

  1. 6
  2. 23
  3. 61
  4. 72
  5. 91

Answer (Detailed Solution Below)

Option 3 : 61

Combinatorics Question 3 Detailed Solution

Key Points

Pigeon hole principle: 

In general, if K is a positive integer and KN+1 pigeons are distributed among 'n; pigeon holes then some hole contains at least K+1 pigeons.

This problem is the same as the above concept, the minimum number of students needed in a class to guarantee that there are at least 6 students whose birthdays fall in the same month over a year. A year has 12 months So,

12×6+1=61

The minimum number of students are=61.

Hence the correct answer is 61.

Combinatorics Question 4:

What is the maximum number of regions that the plane R2 can be partitioned into using 10 lines?

  1. 25
  2. 50
  3. 55
  4. 56
  5. 1024

Answer (Detailed Solution Below)

Option 4 : 56

Combinatorics Question 4 Detailed Solution

Key Points

The recurrence is given by A(n)=A(n−1)+n. Each new nth line drawn is creating n new partitions. While creating partitions, draw the new line in such a way that it cuts all the previously drawn n−1 lines, then the nth line will create n new partitions and previous A(n−1) partitions will remain the same. 

A(n)=A(n−1)+n. A(0)=1,A(1)=2,A(2)=4

A(10)=A(9)+10=46+10=56

A(9)=A(8)+9=37+9=46

A(8)=A(7)+8=29+8=37

A(7)=A(6)+7=22+7=29

A(6)=A(5)+6=16+6=22

A(5)=A(4)+5=11+5=16

A(4)=A(3)+4=7+4=11

A(3)=A(2)+3=4+3=7

Hence the correct answer is 56.

Get Free Access Now
Hot Links: teen patti vungo all teen patti teen patti mastar