Z Transform of Standard Signals MCQ Quiz - Objective Question with Answer for Z Transform of Standard Signals - Download Free PDF
Last updated on Mar 21, 2025
Latest Z Transform of Standard Signals MCQ Objective Questions
Z Transform of Standard Signals Question 1:
Z transform of continuous unit step function is:
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 1 Detailed Solution
Explanation:
Z-Transform of a Continuous Unit Step Function
Definition: The Z-transform is a powerful mathematical tool used in the analysis and design of discrete-time control systems. It transforms a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency domain representation. The Z-transform is particularly useful in solving linear, constant-coefficient difference equations.
Continuous Unit Step Function: The continuous unit step function, often denoted as u(t), is defined as:
\[ u(t) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t \ge 0 \end{cases} \]
However, in the context of discrete-time signals, we consider the discrete unit step function, denoted as u[n], which is defined as:
\[ u[n] = \begin{cases} 0 & \text{for } n < 0 \\ 1 & \text{for } n \ge 0 \end{cases} \]
Z-Transform of the Unit Step Function:
The Z-transform of the discrete unit step function u[n] is obtained by applying the definition of the Z-transform:
\[ U(z) = \mathcal{Z}\{u[n]\} = \sum_{n=0}^{\infty} u[n] z^{-n} \]
Since u[n] = 1 for all n ≥ 0, the Z-transform becomes:
\[ U(z) = \sum_{n=0}^{\infty} z^{-n} \]
This is a geometric series with the first term a = 1 and common ratio r = z-1. The sum of an infinite geometric series is given by:
\[ \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \]
Applying this formula, we get:
\[ U(z) = \frac{1}{1 - z^{-1}} \]
To express it in a more standard form, we multiply the numerator and the denominator by z:
\[ U(z) = \frac{z}{z - 1} \]
Thus, the Z-transform of the discrete unit step function u[n] is:
\[ U(z) = \frac{z}{z - 1} \]
Correct Option Analysis:
The correct option is:
Option 4: \(\rm X(t)=\frac{z}{z-1}\)
This option correctly represents the Z-transform of the discrete unit step function. The transformation and the properties of the geometric series lead to the result \(\rm \frac{z}{z-1}\), which matches the correct Z-transform of the unit step function.
Additional Information
To further understand the analysis, let’s evaluate the other options:
Option 1: \(\rm X(t)=\frac{z}{1-z}\)
This option is incorrect because it does not correctly represent the Z-transform of the unit step function. The denominator should be z - 1, not 1 - z.
Option 2: \(\rm X(t)=\frac{1}{1-z}\)
This option is also incorrect. While it resembles the form of a geometric series, it lacks the factor of z in the numerator, which is necessary for the correct Z-transform expression.
Option 3: \(\rm X(t)=\frac{1}{z-1}\)
This option is incorrect as well. It does not match the correct form of the Z-transform of the unit step function. The numerator should include the factor of z.
Conclusion:
Understanding the Z-transform and its application to discrete-time signals is crucial for analyzing and designing discrete-time control systems. The Z-transform of the discrete unit step function u[n] is correctly given by \(\rm \frac{z}{z-1}\), which matches the correct option 4. Evaluating the other options helps reinforce the proper understanding and application of the Z-transform.
Z Transform of Standard Signals Question 2:
For a casual LTI system the impulse response is \(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\). What will be the system difference equation?
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 2 Detailed Solution
Solution
Some properties of impulse signal are shown below
- x(n) ⋆ δ(n) = x(n)
- x(n) ⋆ δ(n-a) = x(n-a)
- x(n-a) ⋆ δ(n-b) = x(n -a -b)
- x(n)δ(n-a) = x(a)δ(a)
- δ(an) = δ(n)
For a causal LTI system
h(n) = 0 ; n < 0
Calculation
If x(n) is the input to causal LTI system h(n) ,then the output is y(n)
y(n) = x(n) ⋆ h(n)
Calculation
\(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\)
h(n) = δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)
x(n) ⋆ h(n) = x(n) ⋆ [δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)]
y(n) = x(n) + 2x(n-1) + x(n-2) + 3x(n-3)
Hence the correct answer is option 2
Z Transform of Standard Signals Question 3:
Z transform of unit step function is given by
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 3 Detailed Solution
Concept:
Unit step discrete-time sequence = u[n]
z – transformer of an u[n]:
\({a^n}u\left[ n \right] = \frac{z}{{z - a}},\;ROC:\left| z \right| > a\)
a = 1
z – transformer of u[n] is given by:
\(u\left[ n \right] \longleftrightarrow \frac{z}{{z - 1}},\;ROC:\left| z \right| > 1\)
Z Transform of Standard Signals Question 4:
ROC of x(n) = -αn u(-n-1) is
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 4 Detailed Solution
Concept:
Z- transform of x(n) is given as:
\(X(z)=\sum_{-\infty}^{\infty} x(n) z^{-n}\)
Region of convergence (ROC) is defined as the region where the Z-transform exists.
Application:
Given:
x(n) = -αn u(-n-1)
\(X(z)=-\sum_{-\infty}^{-1} \alpha^n z^{-n}\)
\(X(z)=-\sum_{1}^{\infty} (\alpha^{-1} z)^n\)
For the Z-transform to exist,
\(|\alpha ^{-1}z| < 1\)
\({|z|} < |\alpha|\)
\(X(z)=-\frac{\alpha^{-1} z}{1-\alpha^{-1} z}\)
\(X(z)=-(\frac{\frac{z}{\alpha}}{\frac{\alpha-z}{\alpha} }) \)
\(X(z)=\frac{z}{z-\alpha}\)
Z Transform of Standard Signals Question 5:
The signal x[n] = (0.5)n u[n], when applied to a system yields the following output:
y[n] = δ[n] – 2δ[n - 1].
If the impulse response of the system is h[n], what will be the value of the sample h[1]?Answer (Detailed Solution Below) -2.5
Z Transform of Standard Signals Question 5 Detailed Solution
x(n) = (0.5)n u(n)
y(n) = δ(n) - 2δ(n – 1)
Taking the z-transform of input and output, we get:
\(X\left( z \right) = \frac{z}{{z - 0.5}}\)
Y(z) = 1 – 2z-1
\(Y\left( z \right) = \frac{{z - 2}}{z}\)
Transfer function of the system will be:
\(H\left( z \right) = \frac{{Y\left( z \right)}}{{X\left( z \right)}}\)
\(= \left( {\frac{{z - 2}}{z}} \right)\left( {\frac{{z - 0.5}}{z}} \right)\)
\(= \frac{{{z^2} - 2.5\;z + 1}}{{{z^2}}}\)
= 1 – 2.5 z-1 + z-2
Taking the inverse z-transform, we get:
h(n) = δ[n] – 2.5 δ[n – 1] + δ[n – 2]
∴ h[1] = - 2.5
Top Z Transform of Standard Signals MCQ Objective Questions
For a casual LTI system the impulse response is \(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\). What will be the system difference equation?
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 6 Detailed Solution
Download Solution PDFSolution
Some properties of impulse signal are shown below
- x(n) ⋆ δ(n) = x(n)
- x(n) ⋆ δ(n-a) = x(n-a)
- x(n-a) ⋆ δ(n-b) = x(n -a -b)
- x(n)δ(n-a) = x(a)δ(a)
- δ(an) = δ(n)
For a causal LTI system
h(n) = 0 ; n < 0
Calculation
If x(n) is the input to causal LTI system h(n) ,then the output is y(n)
y(n) = x(n) ⋆ h(n)
Calculation
\(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\)
h(n) = δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)
x(n) ⋆ h(n) = x(n) ⋆ [δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)]
y(n) = x(n) + 2x(n-1) + x(n-2) + 3x(n-3)
Hence the correct answer is option 2
ROC of x(n) = -αn u(-n-1) is
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 7 Detailed Solution
Download Solution PDFConcept:
Z- transform of x(n) is given as:
\(X(z)=\sum_{-\infty}^{\infty} x(n) z^{-n}\)
Region of convergence (ROC) is defined as the region where the Z-transform exists.
Application:
Given:
x(n) = -αn u(-n-1)
\(X(z)=-\sum_{-\infty}^{-1} \alpha^n z^{-n}\)
\(X(z)=-\sum_{1}^{\infty} (\alpha^{-1} z)^n\)
For the Z-transform to exist,
\(|\alpha ^{-1}z| < 1\)
\({|z|} < |\alpha|\)
\(X(z)=-\frac{\alpha^{-1} z}{1-\alpha^{-1} z}\)
\(X(z)=-(\frac{\frac{z}{\alpha}}{\frac{\alpha-z}{\alpha} }) \)
\(X(z)=\frac{z}{z-\alpha}\)
Z Transform of Standard Signals Question 8:
Z-transform of x(n) = \({\left( {\frac{3}{4}} \right)^n}u\left( n \right) + {\left( {\frac{1}{3}} \right)^{n}}u\left( { - n - 1} \right)\) is:
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 8 Detailed Solution
The ROC of \({\left( {\frac{3}{4}} \right)^n}u\left( n \right)\) is |z| > 3/4
ROC of \({\left( {\frac{1}{3}} \right)^{n}}u\left( { - n - 1} \right)\) is |z| <1/3
We can see that common area of ROC is zero. So the z- transform doesn't exist
Z Transform of Standard Signals Question 9:
For a casual LTI system the impulse response is \(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\). What will be the system difference equation?
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 9 Detailed Solution
Solution
Some properties of impulse signal are shown below
- x(n) ⋆ δ(n) = x(n)
- x(n) ⋆ δ(n-a) = x(n-a)
- x(n-a) ⋆ δ(n-b) = x(n -a -b)
- x(n)δ(n-a) = x(a)δ(a)
- δ(an) = δ(n)
For a causal LTI system
h(n) = 0 ; n < 0
Calculation
If x(n) is the input to causal LTI system h(n) ,then the output is y(n)
y(n) = x(n) ⋆ h(n)
Calculation
\(h(n)= \left\{ {\mathop 1\limits_ \uparrow ,2,1,3} \right\}\)
h(n) = δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)
x(n) ⋆ h(n) = x(n) ⋆ [δ(n) +2δ(n-1) + δ(n-2) + 3δ(n-3)]
y(n) = x(n) + 2x(n-1) + x(n-2) + 3x(n-3)
Hence the correct answer is option 2
Z Transform of Standard Signals Question 10:
Z-transform of \(\rm x(n) ={\left( {\frac{1}{3}} \right)^{\left| n \right|}}\)is:
Answer (Detailed Solution Below)
\(\rm \frac{{\frac{{ - 8}}{3}{z^{ - 1}}}}{{1 - \frac{{10}}{3}{z^{ - 1}} + {z^{ - 2}}}}\) \(\rm \frac{1}{3} < \left| z \right| < 3\)
Z Transform of Standard Signals Question 10 Detailed Solution
\(\rm X(z) =\mathop \sum \limits_{n = - \infty }^{ - 1} {\left( {\frac{1}{3}} \right)^{-n}}{z^{ - n}} + \mathop \sum \limits_0^\infty {\left( {\frac{1}{3}} \right)^n}{z^{ - n}}\)
We have,
\(\rm \mathop \sum \limits_{n = - \infty }^{ - 1} {\left( {\frac{1}{3}} \right)^{-n}}{z^{ - n}} =\mathop \sum \limits_{n = - \infty }^{ - 1} {\left( {3} \right)^{n}}{z^{ - n}} =ZT\{3^nu\left[-n-1\right]\}\)
From the relation, \(\rm \alpha ^nu\left[-u-1\right]\mathop \leftrightarrow^{ZT}-\frac{1}{1-\alpha z^{-1}}\ \ \ \ \ \ |z<|\alpha|\)
Thus, \(\rm 3^nu\left[-n-1\right]\mathop\leftrightarrow^{ZT}-\frac{1}{1-3z^{-1}}\ \ \ \ \ \ \ |z|<|3|\)
Also, \(\rm (\frac{1}{3})^nu\left[n\right]\mathop\leftrightarrow^{ZT}\frac{1}{1-\frac{1}{3}z^{-1}}\ \ \ \ \ \ \ |z|>|\frac{1}{3}|\)
Thus, \(\rm x(n) ={\left( {\frac{1}{3}} \right)^{\left| n \right|}}\mathop\leftrightarrow ^{ZT}\frac{1}{1-\frac{1}{3}z^{-1}}-\frac{1}{1-3z^{-1}}\ \ \ \ \ \ \ \ \ |\frac{1}{3}|<|z|<|3|\)
\(\rm \Rightarrow X(z) =\frac{1-3z^{-1}-1+\frac{1}{3}z^{-1}}{(1-\frac{1}{3}z^{-1})(1-3z^{-1})}\ \ \ \ \ \ \ \ \ |\frac{1}{3}|<|z|<|3|\)
\(\rm \Rightarrow X(z) =\frac{-\frac{8}{3}z^{-1}}{(1-\frac{10}{3}z^{-1}+z^{-2})}\ \ \ \ \ \ \ \ \ |\frac{1}{3}|<|z|<|3|\)
Z Transform of Standard Signals Question 11:
The signal x[n] = (0.5)n u[n], when applied to a system yields the following output:
y[n] = δ[n] – 2δ[n - 1].
If the impulse response of the system is h[n], what will be the value of the sample h[1]?Answer (Detailed Solution Below) -2.5
Z Transform of Standard Signals Question 11 Detailed Solution
x(n) = (0.5)n u(n)
y(n) = δ(n) - 2δ(n – 1)
Taking the z-transform of input and output, we get:
\(X\left( z \right) = \frac{z}{{z - 0.5}}\)
Y(z) = 1 – 2z-1
\(Y\left( z \right) = \frac{{z - 2}}{z}\)
Transfer function of the system will be:
\(H\left( z \right) = \frac{{Y\left( z \right)}}{{X\left( z \right)}}\)
\(= \left( {\frac{{z - 2}}{z}} \right)\left( {\frac{{z - 0.5}}{z}} \right)\)
\(= \frac{{{z^2} - 2.5\;z + 1}}{{{z^2}}}\)
= 1 – 2.5 z-1 + z-2
Taking the inverse z-transform, we get:
h(n) = δ[n] – 2.5 δ[n – 1] + δ[n – 2]
∴ h[1] = - 2.5
Z Transform of Standard Signals Question 12:
Z-transform of \(x\left[ n \right] = \cos \left( {\frac{{\pi n}}{4}} \right)u\left( n \right)\) is
Answer (Detailed Solution Below)
\(\frac{{1 - {{\left( {\sqrt 2 z} \right)}^{ - 1}}}}{{1 + {z^{ - 2}} - {\sqrt 2{\left( { z} \right)}^{ - 1}}}}\)
Z Transform of Standard Signals Question 12 Detailed Solution
\(\eqalign{ & x\left[ n \right] = \cos \left( {\frac{{\pi n}}{4}} \right)u\left( n \right) = \left( {{e^{j\frac{\pi }{4}n}} + {e^{ - j\frac{\pi }{4}n}}} \right)u\left( 0 \right) \cr & = \frac{1}{2}{\left( {{e^{j\frac{\pi }{4}}}} \right)^n}u\left( n \right) + \frac{1}{2}{\left( {{e^{ - j\frac{\pi }{4}}}} \right)^n}u\left( n \right) \cr & x\left( z \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{z^{ - n}} = \mathop \sum \limits_{n = - \infty }^\infty \frac{1}{2}\left[ {{{\left( {{e^{j\frac{\pi }{4}}}} \right)}^n} + {{\left( {{e^{ - j\frac{\pi }{4}}}} \right)}^n}} \right]u\left( n \right){z^{ - n}} \cr & = \frac{1}{2}\mathop \sum \limits_{n = - 0}^\infty {\left( {{e^{j\frac{\pi }{4}}}} \right)^n}{z^{ - n}} + \frac{1}{2}\mathop \sum \limits_{n = - 0}^\infty {\left( {{e^{ - j\frac{\pi }{4}}}} \right)^n}{z^{ - n}} \cr & = \frac{1}{2}\left[ {\frac{1}{{1 - {e^{j\frac{\pi }{4}{z^{ - 1}}}}}} + \frac{1}{{1 - {e^{ - j\frac{\pi }{4}{z^{ - 1}}}}}}} \right] \cr & = \frac{1}{2}\left[ {\frac{{2 - \left( {{e^{j\frac{\pi }{4}}} + {e^{ - j\frac{\pi }{4}}}} \right){z^{ - 1}}}}{{1 + {z^{ - 2}} - {z^{ - 1}}\left( {{e^{j\frac{\pi }{4}}} + {e^{ - j\frac{\pi }{4}}}} \right)}}} \right] \cr & = \left[ {\frac{{1 - \left( {cos\frac{\pi }{4}} \right){z^{ - 1}}}}{{1 + {z^{ - 2}} - {z^{ - 1}}2\left( {{{cos\frac{\pi }{4}}}} \right)}}} \right] = \frac{{1 - \frac{1}{{\sqrt 2 }}{z^{ - 1}}}}{{1 + {z^{ - 2}} - {z^{ - 1}}{{\sqrt 2 }}}} \cr & x\left( z \right) = \frac{{1 - {{\left( {\sqrt 2 z} \right)}^{ - 1}}}}{{1 + {z^{ - 2}} - {{\sqrt 2z}^{ - 1}}}} \cr}\)
Z Transform of Standard Signals Question 13:
Z transform of unit step function is given by
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 13 Detailed Solution
Concept:
Unit step discrete-time sequence = u[n]
z – transformer of an u[n]:
\({a^n}u\left[ n \right] = \frac{z}{{z - a}},\;ROC:\left| z \right| > a\)
a = 1
z – transformer of u[n] is given by:
\(u\left[ n \right] \longleftrightarrow \frac{z}{{z - 1}},\;ROC:\left| z \right| > 1\)
Z Transform of Standard Signals Question 14:
If X(z) = cos 2z and x(n) has the form \(x\left( n \right) = \mathop \sum \limits_{k = 0}^\infty \frac{{{{\left( a \right)}^k}}}{{\left( {2k} \right)!}}\delta \left( {n + 2k} \right)\) then a = ______.
Answer (Detailed Solution Below) -4
Z Transform of Standard Signals Question 14 Detailed Solution
X(z) = cos 2z
\(\cos \theta = 1 - \frac{{{\theta ^2}}}{{2!}} + \frac{{{\theta ^4}}}{{4!}} - \frac{{{\theta ^6}}}{{6!}} + \ldots \)
\(\cos \theta = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}\frac{{{\theta ^{2k}}}}{{\left( {2k} \right)!}}\)
\(\cos 2z = \mathop \sum \limits_{k = 0}^\infty {\left( { - 1} \right)^k}\frac{{{2^{2k}}{z^{2k}}}}{{\left( {2k} \right)!}}\)
\( = \mathop \sum \limits_{k = 0}^\infty {\left( { - 4} \right)^k}\frac{{{z^{2k}}}}{{\left( {2k!} \right)}}\)
Using the time shift property.
\(\delta \left( {n + k} \right)\mathop \leftrightarrow \limits^z {z^{ + k}}\)
\(\delta \left( {n + 2k} \right) \leftrightarrow {z^{ + 2k}}\)
\(x\left( n \right) = \mathop \sum \limits_{k = 0}^\infty \frac{{{{\left( { - 4} \right)}^k}}}{{\left( {2k} \right)!}}\delta \left( {n + 2k} \right)\)
Comparing with the equation given, we get a = -4
Z Transform of Standard Signals Question 15:
Which of the following functions has unity as its Fourier transform, Laplace transform and Z – transform?
Answer (Detailed Solution Below)
Z Transform of Standard Signals Question 15 Detailed Solution
Impulse function is exist only at t= 0 and the area under impulse function is unity \(\mathop \smallint \limits_{ - \infty }^\infty \delta \left( t \right).dt = 1\)
\(L\left( {\delta \left( t \right)} \right) = \mathop \smallint \limits_{ - \infty }^\infty \delta \left( t \right).{e^{ - st}}.dt = {e^{ - st}}\)|t=0 = 1
\(F\left( {\delta \left( t \right)} \right) = \mathop \smallint \limits_{ - \infty }^\infty \delta \left( t \right).{e^{ - j\omega t}}.dt = {e^{ - j\omega t}}\)|t=0 = 1
Discrete time Laplace transform is Z- transform.
\(Z\left( {\;\delta \left( n \right)} \right) = \mathop \sum \limits_{ - \infty }^\infty \delta \left( n \right).{Z^{ - n}}\)= \({Z^{ - n}}\)|n=0 = 1