Symmetric and Non-symmetric Matrices MCQ Quiz - Objective Question with Answer for Symmetric and Non-symmetric Matrices - Download Free PDF

Last updated on Jul 4, 2025

Latest Symmetric and Non-symmetric Matrices MCQ Objective Questions

Symmetric and Non-symmetric Matrices Question 1:

Let A, B, C be 3 × 3 matrices such that A is symmetric and B and C are skew-symmetric.

Consider the statements

(S1)A13B26 – B26A13 is symmetric

(S2) A26C13 – C13A26 is symmetric

Then,

  1. Only S2 is true
  2. Only S1 is true
  3. Both S1 and S2 are false 
  4. Both S1 and S2 are true

Answer (Detailed Solution Below)

Option 1 : Only S2 is true

Symmetric and Non-symmetric Matrices Question 1 Detailed Solution

Calculation: 

Given, AT = A, BT = –B, CT = –C

Let M = A13B26 – B26A13

⇒ Then, MT = (A13B26 – B26A13)T

= (A13B26)T – (B26A13)T

= (BT)26(AT)13 – (AT)13(BT)26

= B26A13 – A13 B26 = –M

Hence, M is skew symmetric

Let, N = A26C13 – C13A26

⇒ then, NT = (A26C13)T – (C13A26)T

= –(C)13(A)26+ A26C13 = N

Hence, N is symmetric.

∴ Only S2 is true.

Hence, the correct answer is Option 1.

Symmetric and Non-symmetric Matrices Question 2:

A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C. If \(A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix}, \quad \)and \(C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix},\) then the matrix B + D = 

  1. \(\begin{bmatrix} -1 & 6 & 3 \\ 6 & 2 & -2 \\ 3 & -2 & 6 \end{bmatrix}\)
  2. \(\begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix}\)
  3. \(\begin{bmatrix} 3 & 2 & -2 \\ 2 & 6 & 3 \\ -2 & 3 & 2 \end{bmatrix}\)
  4. \(\begin{bmatrix} 1 & -2 & 6 \\ -2 & 3 & 2 \\ 6 & 2 & 1 \end{bmatrix} \)

Answer (Detailed Solution Below)

Option 2 : \(\begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix}\)

Symmetric and Non-symmetric Matrices Question 2 Detailed Solution

Concept

(A + B)T = A + B (symmetric)

(A - B)T = - (A - B) (skew-symmetric)

Calculation

Given:

A + B is symmetric, A - B is skew-symmetric, D = CT

A = \(\begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix}\), C = \(\begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix}\)

⇒ D = CT = \(\begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix}\) 

AT + BT = A + B ...(1)

 

AT - BT = -A + B ...(2)

⇒ (1) + (2): 2AT = 2B

⇒ B = AT

⇒ B = \(\begin{bmatrix} -1 & 4 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{bmatrix}\)

B + D = \(\begin{bmatrix} -1 & 4 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{bmatrix}\) + \(\begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix}\)

⇒ B + D = \(\begin{bmatrix} -1+0 & 4+2 & 3+0 \\ 2+1 & 3-1 & -4+2 \\ 3-2 & -2+0 & 5+1 \end{bmatrix}\)

⇒ B + D = \(\begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix}\)

∴ B + D = \(\begin{bmatrix} -1 & 6 & 3 \\ 3 & 2 & -2 \\ 1 & -2 & 6 \end{bmatrix}\)

Hence option 2 is correct

Symmetric and Non-symmetric Matrices Question 3:

Let A be a symmetric matrix and B be a skew symmetric. If \(A+B=\left(\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right)\), then A - B is equal to

  1. \(\left(\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right)\)
  2. \(\left(\begin{array}{ll} 1 & -2 \\ 3 & -5 \end{array}\right)\)
  3. \(\left(\begin{array}{cc} 1 & -2 \\ -3 & -5 \end{array}\right)\)
  4. \(\left(\begin{array}{cc} 1 & -2 \\ 3 & 5 \end{array}\right)\)
  5. \(\left(\begin{array}{cc} -1 & 3 \\ 2 & -5 \end{array}\right)\)

Answer (Detailed Solution Below)

Option 4 : \(\left(\begin{array}{cc} 1 & -2 \\ 3 & 5 \end{array}\right)\)

Symmetric and Non-symmetric Matrices Question 3 Detailed Solution

Concept Used:

If A is a symmetric matrix, then AT = A.

If B is a skew-symmetric matrix, then BT = -B.

If C = A + B, then CT = AT + BT.

Calculation:

Given:

A is a symmetric matrix.

B is a skew-symmetric matrix.

 A + B = \(\begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}\) ...(1)

⇒ (A + B)T = \(\begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}^T\)

⇒ AT + BT = \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\)

⇒ A - B = \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\) ...(2)

Adding (1) and (2):

⇒ (A + B) + (A - B) = \(\begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}\) + \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\)

⇒ 2A = \(\begin{pmatrix} 2 & 1 \\ 1 & 10 \end{pmatrix}\)

⇒ A = \(\begin{pmatrix} 1 & 1/2 \\ 1/2 & 5 \end{pmatrix}\)

Subtracting (2) from (1):

⇒ (A + B) - (A - B) = \(\begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}\) - \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\)

⇒ 2B = \(\begin{pmatrix} 0 & 5 \\ -5 & 0 \end{pmatrix}\)

⇒ B = \(\begin{pmatrix} 0 & 5/2 \\ -5/2 & 0 \end{pmatrix}\)

A - B = \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\)

∴ A - B = \(\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}\)

Hence option 4 is correct

Symmetric and Non-symmetric Matrices Question 4:

Which of the following matrices is a symmetric matrix? 

  1. \(\left[\begin{array}{ccc} 2 & -3 & 4 \\ 3 & -3 & 4 \\ 4 & -4 & 4 \end{array}\right]\)
  2. \(\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & -3 & 4 \\ 4 & 4 & 4 \end{array}\right]\)
  3. \(\left[\begin{array}{ccc} 2 & 3 & 4 \\ -2 & -3 & -4 \\ 2 & 3 & 4 \end{array}\right]\)
  4. \(\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 3 & -4 \\ 4 & 4 & 4 \end{array}\right]\)

Answer (Detailed Solution Below)

Option 2 : \(\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & -3 & 4 \\ 4 & 4 & 4 \end{array}\right]\)

Symmetric and Non-symmetric Matrices Question 4 Detailed Solution

Concept

Square matrix A is said to be symmetric if aij = aij for all i and j.

Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A ⇔ AT = A

Calculation

For a symmetric matrix, AT = A

\(\left[\begin{array}{ccc} 2 & 3 & 4 \\ 3 & -3 & 4 \\ 4 & 4 & 4 \end{array}\right]\)  is symmetric as all aij = aij

 Option 2 is correct

Symmetric and Non-symmetric Matrices Question 5:

The correct statement regarding the determinants (Det) of matrices R S, and T is

\(R=\left[\begin{array}{lll}3 & 2 & 4 \\ 4 & 5 & 7 \\ 1 & 3 & 8\end{array}\right] \:\:\:\:\:\:\:\: S=\left[\begin{array}{lll}2 & 3 & 4 \\ 5 & 4 & 7 \\ 3 & 1 & 8\end{array}\right] \ \:\:\:\:\:\:\:\:T=\left[\begin{array}{lll}3 & 4 & 1 \\ 2 & 5 & 3 \\ 4 & 7 & 8\end{array}\right]\)

  1. Det(R) = Det(S) ≠ Det(T)
  2. Det(R) = Det(T) ≠ Det(S)
  3. Det(R) = Det(S) = Det(T)
  4. Det(R) = Det(S), Det(T) are all different

Answer (Detailed Solution Below)

Option 2 : Det(R) = Det(T) ≠ Det(S)

Symmetric and Non-symmetric Matrices Question 5 Detailed Solution

\(\begin{array}{l}|R|=3(5\times 8-7\times 3)-2(4\times 8-1\times 7)+4(4\times 3-5)\\ =57-50+28=35\\ |S|=2(4\times 8-1\times 7)-3(5\times 8-7\times 3)+4(5\times 1-4\times 3)\\ =50-57-28=-35\\ T=\left[\begin{array}{lll}3&4&1\\ 2&5&3\\ 4&7&8\end{array}\right]\\ |T|=3(40-21)-4(16-12)+1(14-20)\\ =57-16-6=35\\ |R|=|T|\ne |S|\end{array}\)

Top Symmetric and Non-symmetric Matrices MCQ Objective Questions

The matrix \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\) is a 

  1. identity matrix
  2. symmetric matrix
  3. skew symmetric matrix
  4. none of these

Answer (Detailed Solution Below)

Option 2 : symmetric matrix

Symmetric and Non-symmetric Matrices Question 6 Detailed Solution

Download Solution PDF

Concept:

A square matrix A = [aij]n × n is said to be symmetric if AT = A

AT (Transpose) is obtained by changing rows to columns and columns to rows

Calculation:

Let A = \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\)

 AT = \(\rm \begin{bmatrix} 3 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{bmatrix}\) = A

 A is  a symmetric matrix

If A is skew symmetric matrix, then A2 is a 

  1. null matrix
  2. unitary matrix
  3. skew symmetic
  4. symmetric

Answer (Detailed Solution Below)

Option 4 : symmetric

Symmetric and Non-symmetric Matrices Question 7 Detailed Solution

Download Solution PDF

CONCEPT:

Symmetric Matrix:

Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = At then A is said to be a symmetric matrix.

Skew-symmetric Matrix:

Any real square matrix A = (aij) is said to be skew-symmetric matrix if and only if aij = - aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = - At then A is said to be a skew-symmetric matrix.

Properties of Transpose of a Matrix:

  • If A is a matrix of order m × n, then (At)t = A
  • If k ∈ R is a scalar and A is a matrix of order m × n, then (k × A)t = k × At
  • If A and B are matrices of same order m × n, then (A ± B)t = At ± Bt.

CALCULATION:

Given: A is skew symmetric matrix

As we know that, if A is a skew symmetric matrix i.e A = - At 

⇒ (A2)t = (At)2

∵ A is skew symmetric matrix

⇒ (A2)t = (- A)2 = A2

So, A2 is a symmetric matrix.

Hence, option D is the correct answer.

If a matrix A is Symmetric as well as Skew-Symmetric, then:

  1. A is a diagonal matrix
  2. A is a unit matirx
  3. A is a triangular matirx
  4. A is a null matrix

Answer (Detailed Solution Below)

Option 4 : A is a null matrix

Symmetric and Non-symmetric Matrices Question 8 Detailed Solution

Download Solution PDF

Concept:

Consider a matrix A is skew-symmetric, then AT = −A
and A is symmetric, then AT = A

Calculation:

Since, A is skew-symmetric.
AT = −A
Since, A is symmetric.
AT = A
⇒ −A = A
⇒2A = O
⇒A = O
Hence, A is a null matrix.

Hence, option (4) is correct.

Find the symmetric and the skew-symmetric such that the sum of the matrices is \(\begin{bmatrix} 7& 5 & 7\\ 3 & 4 & 6\\ 2 & 3 & 2 \end{bmatrix}\)

  1. ​P = \(\begin{bmatrix} 7& 4 & 4.5\\ 4& 4 & 4.5\\ 4.5 & 4.5 & 2 \end{bmatrix}\) 
    Q = \(\begin{bmatrix} 0& 1& 2.5\\ -1& 0& 1.5\\ -2.5& -1.5& 0\end{bmatrix}\)
  2. P = \(\begin{bmatrix} 7& 4 & 4.5\\ 4& -4 & 4.5\\ 4.5 & 4.5 & 2 \end{bmatrix}\)
    Q = \(\begin{bmatrix} 0& -1& -2.5\\ -1& 0& -1.5\\ -2.5& -1.5& 0\end{bmatrix}\)
  3. ​P = \(\begin{bmatrix} -7& 4 & 4.5\\ 4& 4 & 4.5\\ 4.5 & 4.5 & -2 \end{bmatrix}\)
    Q = \(\begin{bmatrix} 0& 1& -2.5\\ -1& 0& 1.5\\ 2.5& -1.5& 0\end{bmatrix}\) 
  4. P = \(\begin{bmatrix} -7& 4 & 4.5\\ 4& -4 & 4.5\\ 4.5 & 4.5 & -2 \end{bmatrix}\)
    Q = \(\begin{bmatrix} 0& -1& -2.5\\ 1& 0& 1.5\\ 2.5& -1.5& 0\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 1 : ​P = \(\begin{bmatrix} 7& 4 & 4.5\\ 4& 4 & 4.5\\ 4.5 & 4.5 & 2 \end{bmatrix}\) 
Q = \(\begin{bmatrix} 0& 1& 2.5\\ -1& 0& 1.5\\ -2.5& -1.5& 0\end{bmatrix}\)

Symmetric and Non-symmetric Matrices Question 9 Detailed Solution

Download Solution PDF

Concept: 

A matrix X can be written as a sum of the symmetric and skew-symmetric matrix which are 

P(symmetric) = \(\rm 1\over2\)(X + XT)

Q(skew-symmetric) = \(\rm 1\over2\)(X - XT)

Where XT is transpose of matrix X

 

Calculation:

 

Given matrix X = \(\begin{bmatrix} 7& 5 & 7\\ 3 & 4 & 6\\ 2 & 3 & 2 \end{bmatrix}\)

Transpose matrix XT = \(\begin{bmatrix} 7& 3 & 2\\ 5& 4 & 3\\ 7 & 6 & 2 \end{bmatrix}\)

Symmetric matrix (P) =  \(\rm 1\over2\)(X + XT)

⇒ P =  \(\rm {1\over2}\left(\begin{bmatrix} 7& 5 & 7\\ 3 & 4 & 6\\ 2 & 3 & 2 \end{bmatrix}+\begin{bmatrix} 7& 3 & 2\\ 5& 4 & 3\\ 7 & 6 & 2 \end{bmatrix}\right)\)

⇒ P = \(\rm {1\over2}\begin{bmatrix} 14& 8 & 9\\ 8& 8 & 9\\ 9 & 9 & 4 \end{bmatrix}\) 

⇒ P = \(\begin{bmatrix} 7& 4 & 4.5\\ 4& 4 & 4.5\\ 4.5 & 4.5 & 2 \end{bmatrix}\)

Skew-symmetric matrix (Q) = \(\rm 1\over2\)(X - XT)

⇒ Q =  \(\rm {1\over2}\left(\begin{bmatrix} 7& 5 & 7\\ 3 & 4 & 6\\ 2 & 3 & 2 \end{bmatrix}-\begin{bmatrix} 7& 3 & 2\\ 5& 4 & 3\\ 7 & 6 & 2 \end{bmatrix}\right)\)

⇒ Q = \(\rm {1\over2}\begin{bmatrix} 0& 2 & 5\\ -2& 0 & 3\\ -5 & -3 & 0 \end{bmatrix}\) 

⇒ Q = \(\begin{bmatrix} 0& 1& 2.5\\ -1& 0& 1.5\\ -2.5& -1.5& 0\end{bmatrix}\)

If A = \(\left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right]\) is a symmetric matrix, then 3x + y is equal to?

  1. -1
  2. 0
  3. 1
  4. none of these

Answer (Detailed Solution Below)

Option 1 : -1

Symmetric and Non-symmetric Matrices Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

Symmetric Matrix:

Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = At then A is said to be a symmetric matrix.

Calculation:

\(A = \left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right]\)

A = At

 \( A^t=\left[ {\begin{array}{*{20}{c}} 1&{1 - x}&2\\ {3 + x}&2&{5 - y}\\ 2&{y + 1}&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{3 + x}&2\\ {1 - x}&2&{y + 1}\\ 2&{5 - y}&3 \end{array}} \right] = A\)

On comparing 

3 + x = 1 - x

⇒ x = - 1

And, y + 1 = 5 - y

⇒ y = 2

3x + y = 3(-1) + 2

∴ 3x + y = -1 

If the matrix A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) = B + C, where B is symmetric and C is a skew-symmetric matrix, find the matrix B

  1. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&3&4 \\ { - 3}&0&{ - 7} \\ { - 4}&7&0 \end{array}} \right]\)
  2. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)
  3. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&1&2 \\ 1&{ - 2}&1 \\ 1&2&4 \end{array}} \right]\)
  4. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&{ - 3}&{ - 4} \\ 3&0&7 \\ 4&{ - 7}&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)

Symmetric and Non-symmetric Matrices Question 11 Detailed Solution

Download Solution PDF

Explanation:

Given, the matrix A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

A = B + C

Here matrix A is expressed as the sum of symmetric and skew-symmetric matrices.

Then, \(B=\frac{1}{2}(A+A^{T}) \ and\ C=\frac{1}{2}(A-A^{T})\)

Where B is symmetric and C is a skew-symmetric matrix.

To Find: The matrix B

A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

\(A^{T}=\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right] +\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

\(B=\frac{1}{2}(A+ A^{T})=\frac{1}{2}\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

Divide the matrix A in the sum of symmetric and skew-symmetric

A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\).

Which of the following is that skew-symmetric matrix?

  1. \(\rm \begin{bmatrix} 0 & -3.5 & 1\\ -3.5& 0 & 0.5\\ 1& 0.5 & 0 \end{bmatrix}\)
  2. \(\rm \begin{bmatrix} 2 & -0.5 & 2\\ 0.5& 1 & -2.5\\ -2& 2.5 & 5 \end{bmatrix}\)
  3. \(\rm \begin{bmatrix} 0 & -3.5 & 1\\ 3.5& 0 & 0.5\\ -1& -0.5 & 0 \end{bmatrix}\)
  4. \(\rm \begin{bmatrix} 2 & -0.5 & 2\\ -0.5& 1 & -2.5\\ 2& -2.5 & 5 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \begin{bmatrix} 0 & -3.5 & 1\\ 3.5& 0 & 0.5\\ -1& -0.5 & 0 \end{bmatrix}\)

Symmetric and Non-symmetric Matrices Question 12 Detailed Solution

Download Solution PDF

Concept:

A matrix X can be written as a sum of symmetric and skew-symmetric matrix which are 

P(symmetric) = \(\rm 1\over2\)(X + XT)

Q(skew-symmetric) = \(\rm 1\over2\)(X - XT)

Calculation:

A = \(\rm \begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}\)

AT = \(\rm \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\)

P(symmetric matrix) = \(\rm 1\over2\)(A + AT)

⇒ P = \(\rm {1\over2}\left(\begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}+ \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\right)\)

⇒ P = \(\rm \begin{bmatrix} 2 & -0.5 & 2\\ -0.5& 1 & -2.5\\ 2& -2.5 & 5 \end{bmatrix}\)

Q(skew-symmetric) = \(\rm 1\over2\)(A - AT)

⇒ Q = \(\rm {1\over2}\left(\begin{bmatrix} 2 & -4 & 3\\ 3 & 1 & -2\\ 1& -3 & 5 \end{bmatrix}- \begin{bmatrix} 2 & 3 & 1\\ -4& 1 & -3\\ 3& -2 & 5 \end{bmatrix}\right)\) 

 

⇒ Q = \(\rm \begin{bmatrix} 0 & -3.5 & 1\\ 3.5& 0 & 0.5\\ -1& -0.5 & 0 \end{bmatrix}\)

Which of the following statements is/are correct

If A and B are two symmetric matrices of order n then

1. A + B is also a symmetric matrix.

2. AB is a symmetric matrix

  1. Only 1
  2. Only 2
  3. Neither 1 nor 2
  4. Both 1 and 2

Answer (Detailed Solution Below)

Option 1 : Only 1

Symmetric and Non-symmetric Matrices Question 13 Detailed Solution

Download Solution PDF

Concept:

  • Symmetric Matrix: Any real square matrix A = (aij) is said to be symmetric matrix if and only if aij = aji, ∀ i and j or in other words we can say that if A is a real square matrix such that A = A’ then A is said to be a symmetric matrix.
  • (A ± B)' = A' ± B'
  • (A ⋅ B)' = B' ⋅ A'

Calculation:

Given: A and B are two symmetric matrices of order n

Statement 1: A + B is also a symmetric matrix.

Let's find out transpose of A + B

⇒ (A + B)' = A' + B'

∵ A and B are two symmetric matrices of order n i.e A' = A and B' = B

⇒ (A + B)' = A + B

Hence, statement 1 is true.

Statement 2: A ⋅ B is a symmetric matrix

Let's find out the transpose of A ⋅ B

⇒ (A ⋅ B)' = B' ⋅ A'

∵ A and B are two symmetric matrices of order n i.e A' = A and B' = B

⇒ (A ⋅ B)' = B ⋅ A

But we also know that matrix multiplication is not commutative in general

So, we cannot say that (A ⋅ B)' = A ⋅ B in general

Hence, statement 2 is false.

If \(A = \left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) where P is symmetric and Q is skew symmetric matrix then P and Q are ?

  1. \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2}&5\\ 2&0&{ - \;3}\\ { - \;5}&3&0 \end{array}} \right]\)
  2. \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2}&5\\ 2&0&{ - \;3}\\ { \;5}&3&0 \end{array}} \right]\)
  3. \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{\;2}&5\\ 2&0&{ - \;3}\\ { - \;5}&3&0 \end{array}} \right]\)
  4. \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{\;2}&5\\ 2&0&{\;3}\\ {\;5}&3&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2}&5\\ 2&0&{ - \;3}\\ { - \;5}&3&0 \end{array}} \right]\)

Symmetric and Non-symmetric Matrices Question 14 Detailed Solution

Download Solution PDF

Concept:

  • Symmetric Matrix: Any real square matrix A = (aij) is said to be a symmetric matrix if and only if aij = aji, ∀ i, and j in other words we can say that if A is a real square matrix such that A = A’ then A is said to be a symmetric matrix.
  • Skew-symmetric Matrix: Any real square matrix A = (aij) is said to be a skew-symmetric matrix if and only if aij = - aji, ∀ I, and j or in other words we can say that if A is a real square matrix such that A =- A’ then A is said to be a skew-symmetric matrix.
  • Any real square matrix says A, can be expressed as the sum of the symmetric and skew-symmetric matrix.

    i.e \(A = \frac{1}{2}\;\left( {A + A'} \right) + \frac{1}{2}\;\left( {A - A'} \right)\) where A + A’ is symmetric and A – A’ is a skew-symmetric matrix.

Calculation:

Given: \(A = \left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) 

where P is symmetric and Q is a skew-symmetric matrix

Here we have to find the matrix P and Q

As we know, any square matrix can be expressed as the sum of the symmetric and skew-symmetric matrices.

i.e If A is a square matrix then A can be expressed as

where A + A’ is symmetric and A – A’ is a skew-symmetric matrix.

By comparing \(A = \left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] = \frac{1}{2} \cdot (P + Q)\) with \(A = \frac{1}{2}\;\left( {A + A'} \right) + \frac{1}{2}\;\left( {A - A'} \right)\) we get,

⇒ P = A + A' and Q = A - A'

\(A = \left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] \Rightarrow A' = \left[ {\begin{array}{*{20}{c}} 3&4&0\\ 2&1&6\\ 5&3&7 \end{array}} \right]\)

\(\Rightarrow P = \;\;\left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] + \;\left[ {\begin{array}{*{20}{c}} 3&4&0\\ 2&1&6\\ 5&3&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\)

Similarly,

 \(Q = \;\left[ {\begin{array}{*{20}{c}} 3&2&5\\ 4&1&3\\ 0&6&7 \end{array}} \right] - \;\left[ {\begin{array}{*{20}{c}} 3&4&0\\ 2&1&6\\ 5&3&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - \;2}&5\\ 2&0&{ - \;3}\\ { - \;5}&3&0 \end{array}} \right]\)

Hence, \(P = \left[ {\begin{array}{*{20}{c}} 6&6&5\\ 6&2&9\\ 5&9&{14} \end{array}} \right]\;and\;Q = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2}&5\\ 2&0&{ - \;3}\\ { - \;5}&3&0 \end{array}} \right]\)

Matrix \(\left[ {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 3}\\ 2&1&{ - 2}\\ 3&2&1 \end{array}} \right]\) is ___

  1. symmetric
  2. skew-symmetric
  3. singular
  4. non-singular

Answer (Detailed Solution Below)

Option 4 : non-singular

Symmetric and Non-symmetric Matrices Question 15 Detailed Solution

Download Solution PDF

Concept:  

A symmetric matrix 

  • It is a square matrix A of size n × n when the square matrix is equal to the transposed form of that matrix, that is, AT = A.
  • If A = [aij]n×n is the symmetric matrix, then aij = aji for 1 ≤ i ≤ n, and 1 ≤ j ≤ n.

A skew-symmetric matrix 

  • It is a square matrix A of size n × n when the square matrix is equal to the transposed form of that matrix, that is, AT = -A.
  • Diagonal elements of the skew-symmetric is zero.

If A = [aij]n×n is the skew-symmetric matrix, then aij = -aji for 1 ≤ i ≤ n, and 1 ≤ j ≤ n.

A square matrix is called a singular matrix when its determinant is equal to 0.

A square matrix is called a non-singular matrix when its determinant is not equal to 0.

 

Calculation:

Given:

The given matrix is A = \(\begin{vmatrix} 1& -2& -3 \\ 2& 1& -2 \\ 3& 2 & 1 \\ \end{vmatrix}\).

Transpose of the matrix is At = \(\begin{vmatrix} 1& 2& 3 \\ -2& 1& 2 \\ -3& -2 & 1 \\ \end{vmatrix}\).

Since At ≠ A, hence the matrix A is not symmetric.

Since diagonal elements of the matrix are not zero, then matrix A is not skew-symmetric.

The determinant ∆ of the matrix is given by,

∆ = 1(1(1) - 2(-2)) - (-2)(1(2) - 3(-2)) + (-3)(2(2) - 1(3))

\(\Rightarrow\) ∆ = 1(1 + 4) + 2(2 + 6) - 3(4 - 3)

\(\Rightarrow\) ∆ = 5 + 16 - 3

\(\Rightarrow\) ∆ = 18

The determinant of the matrix is not equal to zero, hence it is non-singular.

Hence, the correct answer is option 4.

Get Free Access Now
Hot Links: teen patti 51 bonus teen patti rummy teen patti wink master teen patti teen patti royal