Operations on Matrices MCQ Quiz - Objective Question with Answer for Operations on Matrices - Download Free PDF
Last updated on Jun 14, 2025
Latest Operations on Matrices MCQ Objective Questions
Operations on Matrices Question 1:
If \(A=\begin{bmatrix}1&2&2 \\ 2&1&2\\2&2&1\end{bmatrix}\) then what is equal to?
Answer (Detailed Solution Below)
Operations on Matrices Question 1 Detailed Solution
Calculation:
Given,
\(A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)
\(\Rightarrow A^2 = A \times A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)
\(\Rightarrow A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}\)
Now 4A
\(\Rightarrow 4A = 4 \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)
\(\Rightarrow 4A = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)
Also A2 - 4A
\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)
\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9-4 & 8-8 & 8-8 \\ 8-8 & 9-4 & 8-8 \\ 8-8 & 8-8 & 9-4 \end{bmatrix}\)
\(\Rightarrow A^2 - 4A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}\)
Relate the result to the identity matrix
\(\Rightarrow A^2 - 4A = 5I_3\)
Hence, the correct answer is option 4.
Operations on Matrices Question 2:
If \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\) then what is (f(π))2 equal to?
Answer (Detailed Solution Below)
Operations on Matrices Question 2 Detailed Solution
Concept:
Rotation Matrix:
- A rotation matrix is used to perform a rotation in a Euclidean space. It is a square matrix that describes the rotation of a vector space.
- For a 2D rotation, the matrix is given by: \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\)
- Here, θ is the angle of rotation in radians.
- cos θ: Represents the cosine of the rotation angle.
- sin θ: Represents the sine of the rotation angle.
- Key property of a rotation matrix:
- The transpose of the matrix is equal to its inverse.
- The determinant of the matrix is always equal to 1.
- When θ = π, the rotation matrix becomes: \(f(\pi) = \begin{bmatrix} \cos \pi & \sin \pi \\ -\sin \pi & \cos \pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
Calculation:
Given,
Rotation matrix at θ = π:
\(f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
To find (f(π))2, multiply the matrix by itself:
\(f(\pi) × f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} × \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)
Using matrix multiplication:
Top-left element: (-1)(-1) + (0)(0) = 1
Top-right element: (-1)(0) + (0)(-1) = 0
Bottom-left element: (0)(-1) + (-1)(0) = 0
Bottom-right element: (0)(0) + (-1)(-1) = 1
Resulting matrix:
\(f(\pi)^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
∴ (f(π))2 is equal to the identity matrix, which is \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\).
Hence, the correct answer is Option 4.Operations on Matrices Question 3:
If
\(A = \begin{bmatrix} y & z & x \\ z & x & y \\ x & y & z \end{bmatrix} \)
where x,y,z are integers, is an orthogonal matrix, then what is the value of ?
Answer (Detailed Solution Below)
Operations on Matrices Question 3 Detailed Solution
Calculation:
Given,
The matrix A is:
\( A = \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)
Since A is an orthogonal matrix, we know that:
\( A^T = A^{-1} \quad \Rightarrow \quad A^T A = I \)
This property tells us that A is orthogonal, and it implies that \(A^T A \) (the product of A's transpose and A is equal to the identity matrix I , which is:
\( A^T A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
Now, let’s calculate \(A^T A \) step by step. The transpose of matrix A , denoted \(A^T \) is:
\( A^T = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \)
Now, we perform matrix multiplication between \(A^T\) and A:
\( A^T A = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)
Performing this multiplication, we get the following matrix:
\( A^T A = \begin{bmatrix} y^2 + z^2 + x^2 & xy + zx + xy & xz + yz + x^2 \\ xy + zx + xy & x^2 + x^2 + y^2 & xy + xz + yz \\ xz + yz + x^2 & xy + xz + yz & x^2 + y^2 + z^2 \end{bmatrix} \)
This matrix must be equal to the identity matrix I , which is:
\( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
By comparing the elements of the matrices, we get the following system of equations:
1. \( y^2 + z^2 + x^2 = 1 \) 2. \(xy + zx + xy = 0 \) 3. \(xz + yz + x^2 = 1 \)Thus, the key result from the orthogonality condition is:
\( x^2 + y^2 + z^2 = 1 \)
Hence, the correct answer is Option 2.
Operations on Matrices Question 4:
If
\(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = \begin{bmatrix} 45 \end{bmatrix}\)
then which one of the following is a value of x?
Answer (Detailed Solution Below)
Operations on Matrices Question 4 Detailed Solution
Calculation:
Multiply Matrix 1 and Matrix 2:
\(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} x+4+7 & 2x+5+8 & 3x+6+9 \end{bmatrix}\)
⇒ \(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix}\)
Multiply the resulting matrix with Matrix 3:
\(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} \)
\(= (x+11) \cdot 1 + (2x+13) \cdot 1 + (3x+15) \cdot x\)
⇒ \((x+11) + (2x+13) + (3x^2+15x)\)
⇒ \((3x^2 + 18x + 24)\)
Equate the result to 45:
\((3x^2 + 18x + 24 = 45)\)
⇒ \((3x^2 + 18x - 21 = 0)\)
\((x^2 + 6x - 7 = 0)\)
\((x^2 + 7x - x - 7 = 0)\)
⇒ \((x = 1 \text{ or } x = -7)\)
Step 5: Verify:
For \(x = 1\), substitute back:
\((3(1)^2 + 18(1) + 24 = 45)\)
45 =45
∴ The correct value of x is 1.
Hence, the correct answer is Option 4.
Operations on Matrices Question 5:
Find the values of "a", if the given matrix is singular
\(\rm \begin{bmatrix}\alpha&-1&-3\\\ 3&2&3\\\ 2&1&2\end{bmatrix}\)
Answer (Detailed Solution Below)
Operations on Matrices Question 5 Detailed Solution
Top Operations on Matrices MCQ Objective Questions
If A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\) is a symmetric matrix then x
Answer (Detailed Solution Below)
Operations on Matrices Question 6 Detailed Solution
Download Solution PDFConcept:
Symmetric Matrix:
- Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself
- AT = A or A’ = A
Where, AT or A’ denotes the transpose of matrix
- A square matrix A is said to be symmetric if aij = aji for all i and j
Where aij and aji is an element present in matrix.
Calculation:
Given:
A is a symmetric matrix,
⇒ AT = A or aij = aji
A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\)
So, by property of symmetric matrices
⇒ a12 = a21
⇒ x – 3 = 3
∴ x = 6lf the order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3, then the order of (ATB)T C T is
Answer (Detailed Solution Below)
Operations on Matrices Question 7 Detailed Solution
Download Solution PDFConcept:
- To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.
- If A be a matrix of order m × n than the order of transpose matrix is n × m
Calculation:
Given:
Order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3
The transpose of the matrix obtained by interchanging the rows and columns of the original matrix.
So, order of AT is 3 × 4 and order of CT is 3 × 7
Now,
ATB = {3 × 4} {4 × 5} = 3 × 5
⇒ Order of ATB is 3 × 5
Hence order of (ATB) T is 5 × 3
Now order of (ATB) T C T = {5 × 3} {3 × 7} = 5 × 7
∴ Order of (ATB) T C T is 5 × 7If \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\) is symmetric, then what is x equal to?
Answer (Detailed Solution Below)
Operations on Matrices Question 8 Detailed Solution
Download Solution PDFConcept:
Symmetric Matrix: If the transpose of a matrix is equal to itself, that matrix is said to be symmetric.
Or, A matrix A is symmetric if and only if swapping indices doesn't change its components
- A = AT
- aij = aji
CALCULATION:
Given - \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\)
A real square matrix A = (aij) is said to be symmetric, if A = AT
Where AT = transpose of matrix A
\({{\rm{A}}^{\rm{T}}} = \left( {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right)\)
∴ A = AT
\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right]\)
Compare A21 element.
⇒ x + 2 =2x - 3
⇒ x = 5
If A is an Involuntary matrix and I is a unit matrix of same order, then (I − A) (I + A) is
Answer (Detailed Solution Below)
Operations on Matrices Question 9 Detailed Solution
Download Solution PDFConcept:
Involuntary matrix:
- Matrix A is said to be Involuntary if A2 = I, where I is an Identity matrix of same order as of A.
- Involuntary matrix is a matrix that is equal to its own inverse. ⇔ A-1 = A
Calculation:
Given that A is involuntary matrix,
⇒ A2 = I
Now,
(I − A) (I + A) = I2 – IA + AI − A2
⇒ I – A + A – I (∵ A2 = I)
⇒ 0
∴ (I − A) (I + A) is zero matrix.If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\), then the value of A4 is
Answer (Detailed Solution Below)
Operations on Matrices Question 10 Detailed Solution
Download Solution PDFCalculation:
Given: \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)
\({{\rm{A}}^2} = {\rm{AA}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)
\(\Rightarrow {{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {0 + 1}&{0 + 0}\\ {0 + 0}&{1 + 0} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
Now,
\(\Rightarrow {{\rm{A}}^4} = {{\rm{A}}^2}{{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
Hence Option 1st is correct answer.
A square matrix A is called orthogonal if_______ where A’ is the transpose of A.
Answer (Detailed Solution Below)
Operations on Matrices Question 11 Detailed Solution
Download Solution PDFConcept:
Orthogonal matrix: When the product of a matrix to its transpose gives identity matrix.
Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.
AAT = I
Calculation:
Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.
Then according to the definition;
AAT = I
Pre multiplication by A-1
A-1 AAT = A-1 I
IAT = A-1
AT = A-1 or A’ = A-1
then A is orthogonal matrix.
If \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\), then the value of x is
Answer (Detailed Solution Below)
Operations on Matrices Question 12 Detailed Solution
Download Solution PDFConcept:
Matrix Multiplication:
Multiplication is only possible when the number of columns of the first matrix is equal to the number of rows of the second matrix.
A m×n matrix multiplied by a n×p matrix results in a m×p matrix.
Matrices are multiplied by multiplying each element of a row of the first m×n matrix with the corresponding elements of all the columns of the second n×p matrix to obtain the first row of the product matrix with p columns, and so on for all the m rows of the first matrix.
Calculation:
\(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix}\) = [2x - 9 4x + 0]
= [2x - 9 4x]
∴ \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\)
\(\rm \Rightarrow \begin{bmatrix}\rm 2x-9 & \rm 4x\end{bmatrix}\begin{bmatrix}\rm x \\ 8\end{bmatrix}\) = 0
⇒ [(2x - 9)x + 8×4x] = 0
⇒ [2x2 - 9x + 32x] = 0
⇒ 2x2 + 23x = 0
⇒ x(2x + 23) = 0
⇒ x = 0 or \(\rm -\dfrac{23}{2}\).
If x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)and 2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\), then y is equal to ?
Answer (Detailed Solution Below)
Operations on Matrices Question 13 Detailed Solution
Download Solution PDFCalculation:
Given:
x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\) .... (1)
2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\) .... (2)
Multiplying by 2 in the equation (1), we get
⇒ 2x + 4y = \(\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\) .... (3)
Subtracting equation (3) from equation (2), we get
⇒ (2x + 5y) - (2x + 4y) = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}-\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)
∴ y = \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)
If A and B are two matrices such that AB = B and BA = A, then A2 + B2 is equal to
Answer (Detailed Solution Below)
Operations on Matrices Question 14 Detailed Solution
Download Solution PDFConcept:
The associative property of matrix is given by:
X (YZ) = (XY) Z ----(1)
Given:
AB = B and BA = A ----(2)
Calculation:
A2 + B2
⇒ AA + BB
⇒ A (BA) + B (AB) [using (2)]
⇒ (AB) A + (BA) B [using (1)]
⇒ BA + AB
⇒ A + B
Hence, A2 + B2 = A + B.
Find the value of x + y, if \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)
Answer (Detailed Solution Below)
Operations on Matrices Question 15 Detailed Solution
Download Solution PDFConcept:
If two matrices A and B are said to be equal if the following conditions hold true:
- Order of matrix A = Order of matrix B
- Corresponding element of matrix A = Corresponding element of matrix B
Calculation:
Given: \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)
As we know that, if two matrices A and B are equal then their corresponding elements are also the same.
⇒ 2x = 8
∴ x = 4
Now,
⇒ -y = 3
∴ y = -3
We have to find the value of x + y
So, x + y = 4 - 3 = 1
Hence, option 2 is the correct answer.