Operations on Matrices MCQ Quiz - Objective Question with Answer for Operations on Matrices - Download Free PDF

Last updated on Jun 14, 2025

Latest Operations on Matrices MCQ Objective Questions

Operations on Matrices Question 1:

If \(A=\begin{bmatrix}1&2&2 \\ 2&1&2\\2&2&1\end{bmatrix}\) then what is equal to?

  1. 5I3
  2. I3
  3. I3
  4. 5I3

Answer (Detailed Solution Below)

Option 4 : 5I3

Operations on Matrices Question 1 Detailed Solution

Calculation:

Given,

\(A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

\(\Rightarrow A^2 = A \times A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

 

\(\Rightarrow A^2 = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}\)

Now 4A

\(\Rightarrow 4A = 4 \times \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\)

\(\Rightarrow 4A = \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)

Also A2 - 4A

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}\)

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 9-4 & 8-8 & 8-8 \\ 8-8 & 9-4 & 8-8 \\ 8-8 & 8-8 & 9-4 \end{bmatrix}\)

\(\Rightarrow A^2 - 4A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}\)

Relate the result to the identity matrix I3" id="MathJax-Element-594-Frame" role="presentation" style="position: relative;" tabindex="0">I3" id="MathJax-Element-39-Frame" role="presentation" style="position: relative;" tabindex="0">I3

\(\Rightarrow A^2 - 4A = 5I_3\)

Hence, the correct answer is option 4.

Operations on Matrices Question 2:

If \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\) then what is (f(π))2 equal to?

  1. \(\begin{bmatrix} -1&0\\ 0&-1\end{bmatrix}\)
  2. \(\begin{bmatrix} 1&1\\ 1&1\end{bmatrix}\)
  3. \(\begin{bmatrix} -1&0\\ 0&1\end{bmatrix}\)
  4. \(\begin{bmatrix} 1&0\\ 0&1\end{bmatrix}\)

Answer (Detailed Solution Below)

Option 4 : \(\begin{bmatrix} 1&0\\ 0&1\end{bmatrix}\)

Operations on Matrices Question 2 Detailed Solution

Concept:

Rotation Matrix:

  • A rotation matrix is used to perform a rotation in a Euclidean space. It is a square matrix that describes the rotation of a vector space.
  • For a 2D rotation, the matrix is given by: \(f(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}\)
  • Here, θ is the angle of rotation in radians.
    • cos θ: Represents the cosine of the rotation angle.
    • sin θ: Represents the sine of the rotation angle.
  • Key property of a rotation matrix:
    • The transpose of the matrix is equal to its inverse.
    • The determinant of the matrix is always equal to 1.
  • When θ = π, the rotation matrix becomes: \(f(\pi) = \begin{bmatrix} \cos \pi & \sin \pi \\ -\sin \pi & \cos \pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

 

Calculation:

Given,

Rotation matrix at θ = π:

\(f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

To find (f(π))2, multiply the matrix by itself:

\(f(\pi) × f(\pi) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} × \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

Using matrix multiplication:

Top-left element: (-1)(-1) + (0)(0) = 1

Top-right element: (-1)(0) + (0)(-1) = 0

Bottom-left element: (0)(-1) + (-1)(0) = 0

Bottom-right element: (0)(0) + (-1)(-1) = 1

Resulting matrix:

\(f(\pi)^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)

∴ (f(π))2 is equal to the identity matrix, which is \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\).

Hence, the correct answer is Option 4.

Operations on Matrices Question 3:

If

 \(A = \begin{bmatrix} y & z & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

where x,y,z are integers, is an orthogonal matrix, then what is the value of ?

  1. 0
  2. 1
  3. 4
  4. 14

Answer (Detailed Solution Below)

Option 2 : 1

Operations on Matrices Question 3 Detailed Solution

Calculation:

Given,

The matrix A is:

\( A = \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

Since A  is an orthogonal matrix, we know that:

\( A^T = A^{-1} \quad \Rightarrow \quad A^T A = I \)

This property tells us that A  is orthogonal, and it implies that \(A^T A \) (the product of A's transpose and A is equal to the identity matrix I , which is:

\( A^T A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

Now, let’s calculate \(A^T A \) step by step. The transpose of matrix A , denoted \(A^T \) is:

\( A^T = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \)

Now, we perform matrix multiplication between \(A^T\) and A:

\( A^T A = \begin{bmatrix} y & z & x \\ x & x & y \\ x & y & z \end{bmatrix} \begin{bmatrix} y & x & x \\ z & x & y \\ x & y & z \end{bmatrix} \)

Performing this multiplication, we get the following matrix:

\( A^T A = \begin{bmatrix} y^2 + z^2 + x^2 & xy + zx + xy & xz + yz + x^2 \\ xy + zx + xy & x^2 + x^2 + y^2 & xy + xz + yz \\ xz + yz + x^2 & xy + xz + yz & x^2 + y^2 + z^2 \end{bmatrix} \)

This matrix must be equal to the identity matrix I , which is:

\( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

By comparing the elements of the matrices, we get the following system of equations:

1. \( y^2 + z^2 + x^2 = 1 \) 2. \(xy + zx + xy = 0 \) 3. \(xz + yz + x^2 = 1 \)

Thus, the key result from the orthogonality condition is:

\( x^2 + y^2 + z^2 = 1 \)

Hence, the correct answer is Option 2. 

Operations on Matrices Question 4:

If

 \(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = \begin{bmatrix} 45 \end{bmatrix}\)

then which one of the following is a value of x?

  1. -2
  2. -1
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 4 : 1

Operations on Matrices Question 4 Detailed Solution

Calculation:

Multiply Matrix 1 and Matrix 2:

 

\(\begin{bmatrix} x & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} x+4+7 & 2x+5+8 & 3x+6+9 \end{bmatrix}\)

\(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix}\)

Multiply the resulting matrix with Matrix 3:

\(\begin{bmatrix} x+11 & 2x+13 & 3x+15 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} \)

\(= (x+11) \cdot 1 + (2x+13) \cdot 1 + (3x+15) \cdot x\)

\((x+11) + (2x+13) + (3x^2+15x)\)

\((3x^2 + 18x + 24)\)

Equate the result to 45:

\((3x^2 + 18x + 24 = 45)\)

\((3x^2 + 18x - 21 = 0)\)

\((x^2 + 6x - 7 = 0)\)

 

\((x^2 + 7x - x - 7 = 0)\)

 

\((x = 1 \text{ or } x = -7)\)

Step 5: Verify:

For \(x = 1\), substitute back:

\((3(1)^2 + 18(1) + 24 = 45)\)

45 =45

∴ The correct value of x is 1.

Hence, the correct answer is Option 4.

Operations on Matrices Question 5:

Find the values of "a", if the given matrix is singular

\(\rm \begin{bmatrix}\alpha&-1&-3\\\ 3&2&3\\\ 2&1&2\end{bmatrix}\)

  1. -3
  2. +3
  3. +2
  4. -3√2
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : -3

Operations on Matrices Question 5 Detailed Solution

To determine the values of \( a \) that make the given matrix singular, we need to find the determinant of the matrix and set it to zero. A matrix is singular if and only if its determinant is zero. Given the matrix: \[ A = \begin{bmatrix} a & -1 & -3 \\ 3 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix} \] The determinant of matrix \( A \) can be computed using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} + (-3) \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2 - 3 \cdot 2) = 6 - 6 = 0 \] \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3 \cdot 1 - 2 \cdot 2) = 3 - 4 = -1 \] Substituting these values back into the determinant formula: \[ \text{det}(A) = a \cdot 1 - (-1) \cdot 0 + (-3) \cdot (-1) = a + 0 + 3 = a + 3 \] For the matrix to be singular, the determinant must be zero: \[ a + 3 = 0 \] Solving for \( a \): \[ a = -3 \] Thus, the value of \( a \) that makes the matrix singular is \( -3 \). Therefore, the correct option is option 1. Here is the LaTeX code for the determinant calculation: ```latex \[ \text{det}(A) = a \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} + (-3) \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \] \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2 - 3 \cdot 2) = 6 - 6 = 0 \] \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3 \cdot 1 - 2 \cdot 2) = 3 - 4 = -1 \] \] \[ \text{det}(A) = a \cdot 1 - (-1) \cdot 0 + (-3) \cdot (-1) = a + 0 + 3 = a + 3 \] \] \[ a + 3 = 0 \implies a = -3 \] ```

Top Operations on Matrices MCQ Objective Questions

If A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\) is a symmetric matrix then x

  1. 3
  2. 6
  3. 8
  4. 0

Answer (Detailed Solution Below)

Option 2 : 6

Operations on Matrices Question 6 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix:

  • Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself
  • AT = A or A’ = A

Where, AT or A’ denotes the transpose of matrix

  • A square matrix A is said to be symmetric if aij = aji for all i and j

Where aij and aji is an element present in matrix.

 

Calculation:

Given:

A is a symmetric matrix,

⇒ AT = A or aij = aji

A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\)

So, by property of symmetric matrices

⇒ a12 = a21

⇒ x – 3 = 3

∴ x = 6

lf the order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3, then the order of (ATB)T C T is

  1. 5 × 3
  2. 4 × 5
  3. 5 × 7
  4. 4 × 3

Answer (Detailed Solution Below)

Option 3 : 5 × 7

Operations on Matrices Question 7 Detailed Solution

Download Solution PDF

Concept:

  • To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.
  • If A be a matrix of order m × n than the order of transpose matrix is n × m

Calculation:

Given:

Order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3

The transpose of the matrix obtained by interchanging the rows and columns of the original matrix.

So, order of AT is 3 × 4 and order of CT is 3 × 7

Now,

ATB = {3 × 4} {4 × 5} = 3 × 5

⇒ Order of ATB is 3 × 5

Hence order of (ATB) T is 5 × 3

Now order of (ATB) T C T = {5 × 3} {3 × 7} = 5 × 7

∴ Order of (ATB) T C T is 5 × 7

If \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\) is symmetric, then what is x equal to?

  1. 2
  2. 3
  3. -1
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Operations on Matrices Question 8 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix: If the transpose of a matrix is equal to itself, that matrix is said to be symmetric.

Or, A matrix A is symmetric if and only if swapping indices doesn't change its components

  • A = AT
  • aij = aji

 

CALCULATION:

Given - \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\)

A real square matrix A = (aij) is said to be symmetric, if A = AT

Where AT = transpose of matrix A

\({{\rm{A}}^{\rm{T}}} = \left( {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right)\)

∴ A = AT

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right]\)

Compare A21 element.

⇒ x + 2 =2x - 3 

⇒ x = 5

If A is an Involuntary matrix and I is a unit matrix of same order, then (I − A) (I + A) is

  1. A
  2. I
  3. 2A
  4. Zero matrix

Answer (Detailed Solution Below)

Option 4 : Zero matrix

Operations on Matrices Question 9 Detailed Solution

Download Solution PDF

Concept:

Involuntary matrix:

  • Matrix A is said to be Involuntary if A2 = I, where I is an Identity matrix of same order as of A.
  • Involuntary matrix is a matrix that is equal to its own inverse. ⇔ A-1 = A

 

Calculation:

Given that A is involuntary matrix,

⇒ A2 = I

Now,

(I − A) (I + A) = I2 – IA + AI − A2 

⇒ I – A + A – I         (∵ A2 = I)

0

∴ (I − A) (I + A) is zero matrix.

If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\), then the value of A4 is

  1. \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 1&1\\ 0&0 \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} 0&0\\ 1&1 \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Operations on Matrices Question 10 Detailed Solution

Download Solution PDF

Calculation:

Given: \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\({{\rm{A}}^2} = {\rm{AA}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\(\Rightarrow {{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {0 + 1}&{0 + 0}\\ {0 + 0}&{1 + 0} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Now,

\(\Rightarrow {{\rm{A}}^4} = {{\rm{A}}^2}{{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Hence Option 1st is correct answer.

A square matrix A is called orthogonal if_______ where A’ is the transpose of A.

  1. A = A2
  2. A’ = A-1
  3. A = A-1
  4. A = A’

Answer (Detailed Solution Below)

Option 2 : A’ = A-1

Operations on Matrices Question 11 Detailed Solution

Download Solution PDF

Concept:

Orthogonal matrix: When the product of a matrix to its transpose gives identity matrix.

Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.

AAT = I

Calculation:

Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.

Then according to the definition;

AAT = I

Pre multiplication by A-1

A-1 AAT = A-1 I

IAT = A-1

AT = A-1 or A’ = A-1
then A is orthogonal matrix.

∴ Option 2 is correct

If \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\), then the value of x is

  1. \(\dfrac{23}{2}\)
  2. \(\dfrac{13}{2}\)
  3. \(-\dfrac{13}{2}\)
  4. \(-\dfrac{23}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(-\dfrac{23}{2}\)

Operations on Matrices Question 12 Detailed Solution

Download Solution PDF

Concept:

Matrix Multiplication:

Multiplication is only possible when the number of columns of the first matrix is equal to the number of rows of the second matrix.

A m×n matrix multiplied by a n×p matrix results in a m×p matrix.

Matrices are multiplied by multiplying each element of a row of the first m×n matrix with the corresponding elements of all the columns of the second n×p matrix to obtain the first row of the product matrix with p columns, and so on for all the m rows of the first matrix.

Calculation:

\(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix}\) = [2x - 9   4x + 0]

= [2x - 9   4x]

∴ \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\)

\(\rm \Rightarrow \begin{bmatrix}\rm 2x-9 & \rm 4x\end{bmatrix}\begin{bmatrix}\rm x \\ 8\end{bmatrix}\) = 0

⇒ [(2x - 9)x + 8×4x] = 0

⇒ [2x2 - 9x + 32x] = 0

⇒ 2x2 + 23x = 0

⇒ x(2x + 23) = 0

⇒ x = 0 or \(\rm -\dfrac{23}{2}\).

If x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)and 2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\), then y is equal to ?

  1. \( \begin{bmatrix} 3 & 11\\ 0 & 7 \end{bmatrix}\)
  2. \( \begin{bmatrix} 3 & 5\\ 0 & -7 \end{bmatrix}\)
  3. \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)
  4. \( \begin{bmatrix} 3 & 5\\ 0 &7 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 3 : \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

Operations on Matrices Question 13 Detailed Solution

Download Solution PDF

Calculation:

Given:

x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)                    .... (1)

2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\)                     .... (2)

Multiplying by 2 in the equation (1), we get

⇒ 2x + 4y = \(\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)             .... (3)

Subtracting equation (3) from equation (2), we get

⇒ (2x + 5y) - (2x + 4y) = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}-\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)

∴ y = \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

 

If A and B are two matrices such that AB = B and BA = A, then A2 + B2 is equal to

  1. 2AB
  2. 2BA
  3. A + B
  4. AB

Answer (Detailed Solution Below)

Option 3 : A + B

Operations on Matrices Question 14 Detailed Solution

Download Solution PDF

Concept:

The associative property of matrix is given by:

X (YZ) = (XY) Z      ----(1)

Given:

AB = B and BA = A      ----(2)

Calculation:

A2 + B2

⇒ AA + BB

⇒ A (BA) + B (AB)      [using (2)]

⇒ (AB) A + (BA) B      [using (1)]

⇒ BA + AB

⇒ A + B

Hence, A2 + B2 = A + B.

Find the value of x + y, if \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)

  1. 4
  2. 1
  3. -3
  4. 6

Answer (Detailed Solution Below)

Option 2 : 1

Operations on Matrices Question 15 Detailed Solution

Download Solution PDF

Concept:

If two matrices A and B are said to be equal if the following conditions hold true:

  • Order of matrix A = Order of matrix B
  • Corresponding element of matrix A = Corresponding element of matrix B

 

Calculation:

Given: \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)

As we know that, if two matrices A and B are equal then their corresponding elements are also the same.

⇒ 2x = 8 

∴ x = 4

Now,

⇒ -y = 3

∴ y = -3

We have to find the value of x + y

So,  x + y = 4 - 3 = 1

Hence,  option 2 is the correct answer.

Get Free Access Now
Hot Links: teen patti master update teen patti master king teen patti lucky