Multiple Integrals MCQ Quiz - Objective Question with Answer for Multiple Integrals - Download Free PDF

Last updated on Mar 20, 2025

Latest Multiple Integrals MCQ Objective Questions

Multiple Integrals Question 1:

If the value of the double integral

x=34y=12dydx(x+y)2

is loge(a24), the a is ________ (answer in integer)

Answer (Detailed Solution Below) 25

Multiple Integrals Question 1 Detailed Solution

Explanation:

 x=3x=4y=1y=2dxdy(x+y)2

x=3x=4[1(x+y)dx]y=1y=2

=x=3x=4[12+x1x+1]

[ln(2+x)ln(x+1)]x=3x=4

[ln(2+xx+1)]34

=[ln(65)ln(54)]

[ln(6×45×5)]

=ln(2425)

=ln(2524)

Thus, loge(a24)=ln(2524)

∴ a = 25

Multiple Integrals Question 2:

Find the volume of the region bounded by the paraboloid z=x2+y2  and the sphere x2+y2+z2=2 is ?

  1. V=π6(827)
  2. V=π6(82+7)
  3. V=π6(82+7)
  4. V=π6(827)

Answer (Detailed Solution Below)

Option 4 : V=π6(827)

Multiple Integrals Question 2 Detailed Solution

Explanation:

Intersection of the Surfaces:

The paraboloid z=x2+y2  intersects the sphere  x2+y2+z2=2  where:

z=x2+y2  and  x2+y2+z2=2

Substituting z=x2+y2  into the sphere equation:

x2+y2+(x2+y2)2=2

Let r2=x2+y2 :

r2+r4=2

Solving r2 gives r2=1 

Thus, the intersection occurs at r = 1 

z ranges from the paraboloid (z=x2+y2=r2) to the sphere (z=2r2)

r ranges from 0 to 1

θ  ranges from 0 to 2π 

In Cylindrical Coordinates: 

x=rcosθ , y=rsinθ , z = z , dV=rdzdrdθ 

The volume integral becomes:

V=02π01r22r2rdzdrdθ 

(Integrating with respect to z ) :

r22r2rdz=rr22r2dz=r[2r2r2] 

(Integrating with respect to r ) :

01r(2r2r2)dr=01r2r2dr01r3dr 

For 01r3dr  : 01r3dr=[r44]01=14 

For 01r2r2dr , let u=2r2 , so du=2rdr 

01r2r2dr=1221u1/2(du)=1212u1/2du 

12u1/2du=[23u3/2]12=23(23/213/2)=23(221) 

So: 01r2r2dr=1223(221)=13(221)

01r(2r2r2)dr=13(221)14 

(with respect to θ ): Multiply by 02πdθ=2π :

V=2π[13(221)14]

V=2π(2231314) 

V=π6(827) 

This is the volume of the region.

Hence Option(4) is the correct answer.

Multiple Integrals Question 3:

The value of integral 207Rxex2y2dxdy , where R is the closed region bounded by the lines y=x,y=x1,y=0, and y=1 .

  1. 107[e3e2]
  2. 107[e3+e2]
  3. 207[e3e2]
  4. 207[e3+e2]

Answer (Detailed Solution Below)

Option 1 : 107[e3e2]

Multiple Integrals Question 3 Detailed Solution

Explanation: 

 

207Rxex2y2dxdy 

=  20701yy+1xex2y2dxdy

= 207×1201[ex2]yy+1yy+1xex2dxdy

201401[ex2]yy+1ey2dy  

=201401(e2y+11)du 

=20712[eu]y2(y+1)2

=107[e3e2] 

 

Hence Option(1) is the correct answer.

 

Multiple Integrals Question 4:

The value of triple integral 

D6xyzdxdydz

where D is the region bounded by the positive octant of the sphere  x2+y2+z2=a2 

  1. a616
  2. a632
  3. a648
  4. a68

Answer (Detailed Solution Below)

Option 4 : a68

Multiple Integrals Question 4 Detailed Solution

Explanation:

qImage676e61c91e02ad4d9a59ae5c

 

Let I = D6xyzdxdydz

The region D is the portion of the sphere in the first octant (where x, y, and z are all positive)

0xa

0y(a2x2)

0z(a2x2y2)

Now, the triple integral can be written as:

I = 0a0a2x20a2x2y26xyzdzdydx

Integrate with respect to z:

I = 0a0a2x2[62xyz2]0a2x2y2dydx

Substitute the limits of integration for z:

I = 0a0a2x23xy(a2x2y2)dydx

I = 0a[3x(a2yx2yy3)]0a2x2dx

Integrate with respect to y:

I = 0a[3x(a2y22x2y22y44)]0a2x2dx

Substitute the limits of integration for y:

I = 0a34x(a2x2)2dx

Integrate with respect to x:

I = [34(a4x2a2x3+x5)]0a

Substitute the limits of integration for x:

I=34×a66

I=a68

Hence Option(4) is the correct answer.

Multiple Integrals Question 5:

Evaluate the triple integral:

I=EzdV,  where E is the region in the first octant bounded by the planes x = 0 , y = 0 , z = 0 , and the plane x + y + z = 1 .  

Which of the following is the correct value of I ?  

  1. 112
  2. 16
  3. 18
  4. 124

Answer (Detailed Solution Below)

Option 4 : 124

Multiple Integrals Question 5 Detailed Solution

Explanation:

The region E is a tetrahedron in the first octant, bounded by the planes:
x = 0 ,
y = 0 ,
z = 0 , and x + y + z = 1  

0z1xy0y1x0x1

Now,

I=0101x01xyzdzdydx

Integrate with respect to z :  

01xyzdz=[z22]01xy=(1xy)22

Integrate with respect to y :  

01x(1xy)22dy=1201x(1xy)2dy.
 
Use substitution u = 1 - x - y , du = -dy , bounds: u = 1-x to u = 0 :

121x0u2(du)=1201xu2du

= 12[u33]01x

12(1x)33

= (1x)36

Integrate with respect to x :  

01(1x)36dx=1601(13x+3x2x3)dx

16(1312+31314)

16(132+114)

= 16(4464+4414)

= 1614

=124

Hence Option(4) is the correct answer.

Top Multiple Integrals MCQ Objective Questions

Let I=x=01y=0x2xy2dydx. Then, I may also be expressed as

  1. y=01x=0yxy2dxdy
  2. y=01x=y1yx2dxdy
  3. y=01x=y1xy2dxdy
  4. y=01x=0yyx2dxdy

Answer (Detailed Solution Below)

Option 3 : y=01x=y1xy2dxdy

Multiple Integrals Question 6 Detailed Solution

Download Solution PDF

Given:

I=x=01y=0x2xy2dydx

0 ≤ y ≤ x2 (this is represented by vertical strip)

And x varies from 0 to 1.

F3 M.J Madhu 02.05.20 D 1

Now if we change the order of integration, we have to draw a horizon strip.

F3 M.J Madhu 02.05.20 D 2

After changing the order of Integration

yx1

And, 0 ≤ y ≤ 1

∴ I=y=01x=y1xy2dxdy

Evaluate

01y2101xx dz dx dy

  1. 235
  2. 435
  3. 417
  4. 217

Answer (Detailed Solution Below)

Option 2 : 435

Multiple Integrals Question 7 Detailed Solution

Download Solution PDF

Concept:

The triple integral can be evaluated as repeated integral:

x1x2y1y2z1z2f(x,y,z)   dz   dy   dx

First, f(x, y, z) is integrated w.r.t z between limits z1 and z2 keeping x and y constant, then integrated w.r.t y between limits y1 and y2 keeping x constant. The result is then integrated w.r.t x.

Calculation:

Given:

01y2101x  dz   dx   dy

=01y21  |z|01x   dx   dy

=01y21  (1x)   dx   dy

=   01|x22x33|y21   dy

=01(1213)(y42y63)   dy

=16|y510y721|01

=16110+121=1060660+121=115+121

=3621×15=435

The value of integral 020    xex+ydydx is

  1. 12(e1)
  2. 12(e21)2
  3. 12(e2e)
  4. 12(e1e)2

Answer (Detailed Solution Below)

Option 2 : 12(e21)2

Multiple Integrals Question 8 Detailed Solution

Download Solution PDF

020xex+ydydx=02ex(0xeydy)dx

=02ex(ey)0xdx=02ex(ex1)dx

=02(e2xex)dx=(e2x2ex)02

=e42e212+1=e42e2+12

=12(e42e2+1)=12(e21)2

Consider the shaded triangular region P shown in the figure. What is Pxydxdy ?

F1 U.B Madhu 31.01.20 D1

  1. 1/6
  2. 2/9
  3. 7/16
  4. 1

Answer (Detailed Solution Below)

Option 1 : 1/6

Multiple Integrals Question 9 Detailed Solution

Download Solution PDF

GATE - 2008 M.E Images Q21a

The equation of line in intercept form is given by

x2+y1=1

⇒ y=1x2x=22y

⇒ 010     22y(xydx)dy=01[(yx22)|022y]dy

=01y2(22y)2dy

=012y(1y)2dy=01(2y4y2+2y3)dy

=[y243y3+y42]01=16

The integral 12πD(x+y+10)dxdy, where D denotes the disc 𝑥2 + 𝑦2 ≤ 4, evaluates to__________.

Answer (Detailed Solution Below) 20

Multiple Integrals Question 10 Detailed Solution

Download Solution PDF

Given,

12πD(x+y+10)dxdy

and x2 + y2 ≤ 4

Putting x = r.cosθ, y = r.sinθ and dx.dy = r.dr.dθ

I=12πθ=02πr=02(rcosθ+rsinθ+10)rdrdθ

=12πθ=02π(r33cosθ+r33sinθ+5r2)02dθ

=12π[θ=02π(83cosθ+83sinθ+20)dθ]

=12π[0+0+20(2π)]=20

The area enclosed between the straight line y = x and the parabola y = x2 in the x – y plane is____________

  1. 1/6
  2. 1/4
  3. 1/3
  4. 1/2

Answer (Detailed Solution Below)

Option 1 : 1/6

Multiple Integrals Question 11 Detailed Solution

Download Solution PDF

The given curves are y = x and y = x2

Solving the equations, we get

x  = 0, x = 1

GATE ME 2012 Images Q23

Area=01(xx2)dx

=(x22x33)01=1213

=16squnits

Alternate Solution:

Concept:

Area of a region can be calculated by:

dxdy

Calculation:

Solving equation y = x2 and we get y = x

We get intersection points i.e. (0,0) and (1,1)

Area of the region:

x=0x=1y=x2y=xdy.dx

x=0x=1[y]x2x.dx

x=0x=1(xx2)dx

[x22x33]01=1213=16

The value of the integral 0πyπsinxxdxdy, is equal to _______.

Answer (Detailed Solution Below) 1.99 - 2.01

Multiple Integrals Question 12 Detailed Solution

Download Solution PDF

Given:y=0πx=yπsinxxdxdy

GATE 2019 ECE (19-41) SOLUTIONS images Q1

GATE 2019 ECE (19-41) SOLUTIONS images Q1a

Changing the order and take vertical strip, we get:

I=x=0πy=0y=xsinxxdxdy

x=0πsinxxdxy=0y=xdy

x=0πsinxxdx[y]0x

x=0πsinxxdx[x0]

I=x=0πsinxdx

I=(cosx)0π

I = (1 – (-1))

I = 2

The integral 010x2(x2+y2)dydx equals to

  1. 26105
  2. 4105
  3. 12105
  4. 16105

Answer (Detailed Solution Below)

Option 1 : 26105

Multiple Integrals Question 13 Detailed Solution

Download Solution PDF

Explanation:

We have the integration given as,

I=010x2(x2+y2)dydx

I=010x2(x2+y2)dydx

I=01[x2y+y33]0x2dx

I=01[x4+x63]dx

Placing the limits we get,

I=[x55+x77×3]01

I=15+121=26105

Hence the required value of integration will be 26105.

The area of an ellipse represented by an equation x2a2+y2b2=1 is

  1. πab4
  2. πab2
  3. πab
  4. 4πab3

Answer (Detailed Solution Below)

Option 3 : πab

Multiple Integrals Question 14 Detailed Solution

Download Solution PDF

Concept:

Ellipse x2a2+y2b2=1

Length major axis of ellipse = 2a

Length of minor axis of ellipse = 2b

Area =R1dydx

Calculation:

x2a2+y2b2=1y=b(1x2a2).

F1 Neelmani Deepak 10.04.2020 D1

For the first quadrant, take a vertical strip as shown. Here, y coordinate varies from 0 to b(1x2a2)=baa2x2.

Also, the x-coordinate varies from 0 to a

∴ Area =0a0baa2x2(1)dydx

=0a(baa2x2)dx

=ba[xa2x22+a22sin1(xa)]0a=ba×a22×π2=πab4

∴ The total area of ellipse =4×πab4 = πab units

Important Points

1) x2 + y2 = a2 ; Represents a circle centred at (0, 0) and radius ‘a’ units.

2) x2a2+y2b2=1; Represents Ellipse with major axis length 2a and minor axis length 2b and vertex at (0,0)

3) x2a2y2b2=1; Equation of Hyperbola .

4) x2a2y2a2=1; Equation of Rectangular Hyperbola.

Evaluate the following integral 0a0a0a(xy+xz+yz)dx dy dz.

  1. 34a3
  2. 23a5
  3. 34a5
  4. 53a3

Answer (Detailed Solution Below)

Option 3 : 34a5

Multiple Integrals Question 15 Detailed Solution

Download Solution PDF

Concept:

Triple integral can be evaluated as repeated integral:

x1x2y1y2z1z2f(x,y,z)   dz   dy   dx

First, f(x, y, z) is integrated w.r.t z between limits z1 and z2 keeping x and y constant, then integrated w.r.t y between limits y1 and y2 keeping x constant. The result is then integrated w.r.t x.

Calculation:

0a0a0a(xy+xz+yz)   dx   dy   dz.

=0a0a|x22y+x22z+yzx|0ady   dz

=0a0a(a22y+a22z+ayz)dy   dz

=0a|a22y22+a22zy+ay22z|0a   dz

=   0a(a44+a32z+a32z)dz

=|a44z+a32×z22+a32×z22|0a = (a54+a54+a54)=3a54
Get Free Access Now
Hot Links: teen patti flush teen patti palace teen patti teen patti bodhi teen patti bindaas