Conjugate of Complex Number MCQ Quiz - Objective Question with Answer for Conjugate of Complex Number - Download Free PDF

Last updated on Apr 23, 2025

Latest Conjugate of Complex Number MCQ Objective Questions

Conjugate of Complex Number Question 1:

What is the conjugate of the given complex number?

z = 3i + 7

  1. z¯ = 3 + 7i
  2. z¯ = -3i + 7
  3. z¯ = 3i - 7
  4. z¯ = -3i - 7

Answer (Detailed Solution Below)

Option 2 : z¯ = -3i + 7

Conjugate of Complex Number Question 1 Detailed Solution

Concept:

If a complex number is a ± bi, then the complex conjugate will be a ∓  bi and vice-versa.

Where a & b are real numbers and i = Imaginary number =1

Calculation:

Given the complex number z = 3i +  7 

∴ The complex conjugate of this number = -3i + 7

Option 2 is correct

Conjugate of Complex Number Question 2:

If |z - 1 - i| = 1, then the locus of a point represented by the complex number 3(z - i) - 4 is ______.

  1. Circle with center (1, 0) and radius 3.
  2. Circle with centre (-1, 0) and radius 4
  3. Circle with centre (-1, 0) and radius 3
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : Circle with centre (-1, 0) and radius 3

Conjugate of Complex Number Question 2 Detailed Solution

Given:

|z - 1 - i| = 1

Let us solve the question graphically,

|z| = 1

F1 Neha Shraddha 16.07.2021 D1

for |z - 1 - i|, the centre is shifted to (1, 1)

F1 Neha Shraddha 16.07.2021 D2

3(z - i) - 4

For (z - i), the graph is shifted down and centre is now at (1, 0)

F1 Neha Shraddha 16.07.2021 D3

3(z - i) (the center is shifted to (3, 0)

F1 Neha Shraddha 16.07.2021 D4

3(z - i) - 4,

the circle is shifted left by 4 units, 

F1 Neha Shraddha 16.07.2021 D5

∴ we get a circle having a radius of 3 and centre at (-1, 0).

Conjugate of Complex Number Question 3:

Find the conjugate of 123i

  1. 213+313i
  2. 213313i
  3. 413313i
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 213313i

Conjugate of Complex Number Question 3 Detailed Solution

Concept:

Conjugate of a Complex Number:

Conjugate of a complex number z = x + iy is x - iy and which is denoted as z.

For example, the conjugate of the complex number z = 3 - 4i is 3 + 4i. 

Solution:

123i

123i×2+3i2+3i

=2+3i22+32

=2+3i4+9

=2+3i13

=213+313i

Conjugate of this complex number is 213313i

∴ The correct option is (2)

Conjugate of Complex Number Question 4:

Consider the following

1. zz̅ = |z|2

2. z-1 = z|z|2, where z = complex number 

Which of the above statement is/are correct?

  1. Only 1
  2. Only 2
  3. Both 1 and 2
  4. Neither 1 nor 2
  5. Not Attempted

Answer (Detailed Solution Below)

Option 1 : Only 1

Conjugate of Complex Number Question 4 Detailed Solution

Concept:

Consider a complex number, z = a + ib

Conjugate of complex number = z̅ = a - ib

Modulus of complex number  = |z| = (a2+b2)

Calculation: 

Let, z = a + ib,

zz̅ = (a + ib)(a - ib)

a2(ib)2

a2i2(b)2

=a2(ib)2

=a2+b2(i2=1)

And, |z|2 = (a2+b2)2

a2+b2

∴ zz̅  = |z|2

Now, 

 z1=1z=1a+ib

=1a+ib×aibaib=aiba2+b2

z¯|z|2 ≠ z|z|2

Hence, option (1) is correct.

Conjugate of Complex Number Question 5:

Find conjugate of 3+2i2i:

  1. 4575i
  2. 45+75i
  3. 4575i
  4. 45+75i
  5. Not Attempted

Answer (Detailed Solution Below)

Option 1 : 4575i

Conjugate of Complex Number Question 5 Detailed Solution

Concept:

Conjugate of a complex number:

For any complex number z = x + iy  the conjugate z̅ is given by  z̅ = x - iy

Calculation:

Let z = 3+2i2i

z = 3+2i2i×2+i2+i

z = 6+7i+2i222(i)2

z = 4+7i5

z = 45+75i

Conjugate of z = z̅ = 4575i

Top Conjugate of Complex Number MCQ Objective Questions

Find the conjugate of (i - i2)3

  1. -2 - 2i
  2. -2 + 2i
  3. i - 1
  4. 2 + 2i

Answer (Detailed Solution Below)

Option 1 : -2 - 2i

Conjugate of Complex Number Question 6 Detailed Solution

Download Solution PDF

1Concept:

Let z = x + iy be a complex number.

  • Modulus of z = |z|=x2+y2=Re(z)2+Im(z)2
  • arg (z) = arg (x + iy) = tan1(yx)
  • For calculating the conjugate, replace i with -i.
  • Conjugate of z = x – iy

Calculation:

Let z = (i - i2)3

⇒ z = i3 (1 - i) 3  = - i (1 - i)3

For calculating the conjugate, replace i with -i.

⇒ z̅  =  -(- i) (1 - (- i))3

⇒ z̅  =  i(1 + i)3

Using (a + b) 3 = a3 + b3 + 3a2b + 3ab2

⇒ z̅  =  i(1 + i3 +3 ×12 × i + 3 × i2 × 1 ) 

⇒ z̅  =  i(1 - i + 3i - 3

⇒ z̅  =  i(-2 + 2i)

⇒ z̅  = -2i + 2i2

⇒ z̅  = -2 - 2 i

So, the conjugate of  (i - i2)3 is -2 - 2i

The conjugate of the complex number 3i+423i is:

  1. 1131813i
  2. 1813i+113
  3. 1813i113
  4. 1131813i

Answer (Detailed Solution Below)

Option 1 : 1131813i

Conjugate of Complex Number Question 7 Detailed Solution

Download Solution PDF

Concept: 

Let z = x + iy be a complex number.

  • Modulus of z = |z|=x2+y2=Re(z)2+Im(z)2
  • arg (z) = arg (x + iy) = tan1(yx)
  • Conjugate of z = z̅ = x – iy


Calculation:

Given complex number is z = 3i+423i

z = 3i+423i×2+3i2+3i

z = 6i+89+12i22(3i)2

z = 18i113

z = 113+1813i

Conjugate of z = (z̅) = 1131813i

The conjugate of (3i)(1+2i)(2+i)(13i)  is . 

  1. - i 
  2.  i
  3.  -2i
  4.  i/2

Answer (Detailed Solution Below)

Option 1 : - i 

Conjugate of Complex Number Question 8 Detailed Solution

Download Solution PDF

Concept:

Let z = x + iy be a complex number,

Where x is called the real part of the complex number or Re (z) and y is called the Imaginary part of the complex number or Im (z)

Conjugate of z = z̅ = x - iy  

 

Calculation:

Let z = (3i)(1+2i)(2+i)(13i)

⇒ z = 3+6ii2i226i+i3i2  = 3+6ii+226i+i+3

⇒ z = 5+5i55i  = 1+i1i 

⇒ z = 1+i1i × 1+i1+i = 1+i2+2i1i2 = i 

⇒ z =  

We know that, Conjugate of z = z̅ = x - iy   

⇒ z = - i  . 

The correct option is 1

Find the conjugate of i+32i+1

  1. 1 - i
  2. -i - 1
  3. i - 1
  4. 1 + i

Answer (Detailed Solution Below)

Option 4 : 1 + i

Conjugate of Complex Number Question 9 Detailed Solution

Download Solution PDF

Concept:

Conjugate of a complex number:

For any complex number z = x + iy  the conjugate z̅ is given by  z̅ = x - iy

Calculation:

z = i+32i+1

z = i+32i+1×2i+12i+1

z = 2i26i+i+31(2i)2

z = 55i1+4

z = 5(1i)5

z = 1 - i

Conjugate of z = z̅  = 1 + i

The conjugate of the complex number i+213i is:

  1. 110710i
  2. 110710i
  3. 1575i
  4. 1575i

Answer (Detailed Solution Below)

Option 1 : 110710i

Conjugate of Complex Number Question 10 Detailed Solution

Download Solution PDF

Concept: 

Let z = x + iy be a complex number.

  • Modulus of z = |z|=x2+y2=Re(z)2+Im(z)2
  • arg (z) = arg (x + iy) = tan1(yx)
  • Conjugate of z = z̅ = x – iy


Calculation:

Given complex number is z = i+213i

z = i+213i×1+3i1+3i

z = i+2+6i+3i212(3i)2

z = 7i110

z = 110+710i

Conjugate of z = (z̅) = 110710i

NOTE:

The complex conjugate has the same real part as z and the same imaginary part but with the opposite sign.

The curve represented by z z̅  + (1 + i) z +(1 - i) z̅  = 0 will be:

  1. a circle with center at (-1, 1) and radius as √2
  2. an ellipse with semi-major axis as 2 semi-minor axis as 1
  3. a straight line with x - intercept as - 2
  4. a parabola with vertex at (-1, 0)

Answer (Detailed Solution Below)

Option 1 : a circle with center at (-1, 1) and radius as √2

Conjugate of Complex Number Question 11 Detailed Solution

Download Solution PDF

Concept:

The circle is defined as the locus of a point that moves in a plane such that its distance from a fixed point in that plane is constant.

Equation of circle having a center (h, k) and radius a is  given as,

(x - h)2 + (y - k)2 = a2

But when a circle passes through the origin, then the equation of the circle is

x2 + y2 - 2 × h × x - 2 × k × y = 0 ----(1)

a2 = h2 + k-----(2)

Calculation:

Given:

z z̅  + (1 + i) z +(1 - i) z̅  = 0

As we know,

z = x + iy,  = x - iy using these value in the above given equation we get:

(x + iy)(x - iy) + (1 + i)(x + iy) + (1 - i)(x - iy) = 0

x2 + y2 + x + iy + ix - y + x - iy - ix - y = 0

x2 + y2 + 2x - 2y = 0 -----(3)

Comparing (3) with (1) we get:

h = -1 and k = 1 which are centre of circle.

By using h, k values in (2) we get the radius of the circle as √2.

26 June 1

The general equation of a non-degenerate conic section is: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 where A, B and C are all not zero

The above given equation represents a non-degenerate conics whose nature is given below in the table:

 S.No. 

Condition

Nature of Conic

1

B = 0 and A = C

Circle

2

B = 0 and Either A = 0 or C = 0

Parabola

3

B = 0, A ≠ C and AC > 0

Ellipse

4

B = 0, A ≠ C and sign of A and C are opposite

Hyperbola

 

Find conjugate of 3+2i2i:

  1. 4575i
  2. 45+75i
  3. 4575i
  4. 45+75i

Answer (Detailed Solution Below)

Option 1 : 4575i

Conjugate of Complex Number Question 12 Detailed Solution

Download Solution PDF

Concept:

Conjugate of a complex number:

For any complex number z = x + iy  the conjugate z̅ is given by  z̅ = x - iy

Calculation:

Let z = 3+2i2i

z = 3+2i2i×2+i2+i

z = 6+7i+2i222(i)2

z = 4+7i5

z = 45+75i

Conjugate of z = z̅ = 4575i

Consider the following

1. zz̅ = |z|2

2. z-1 = z|z|2, where z = complex number 

Which of the above statement is/are correct?

  1. Only 1
  2. Only 2
  3. Both 1 and 2
  4. Neither 1 nor 2

Answer (Detailed Solution Below)

Option 1 : Only 1

Conjugate of Complex Number Question 13 Detailed Solution

Download Solution PDF

Concept:

Consider a complex number, z = a + ib

Conjugate of complex number = z̅ = a - ib

Modulus of complex number  = |z| = (a2+b2)

Calculation: 

Let, z = a + ib,

zz̅ = (a + ib)(a - ib)

a2(ib)2

a2i2(b)2

=a2(ib)2

=a2+b2(i2=1)

And, |z|2 = (a2+b2)2

a2+b2

∴ zz̅  = |z|2

Now, 

 z1=1z=1a+ib

=1a+ib×aibaib=aiba2+b2

z¯|z|2 ≠ z|z|2

Hence, option (1) is correct.

If sin x + i cos 2x and cos x - i sin 2x are conjugate to each other, then:

  1. x = nπ
  2. x = (2n + 1)π4
  3. x = 1
  4. No value of x 

Answer (Detailed Solution Below)

Option 4 : No value of x 

Conjugate of Complex Number Question 14 Detailed Solution

Download Solution PDF

Concept:

  • The conjugate of the complex function is given by changing the sign of i.
  • If z = x + iy , then  z = x - iy

Explanation:

Given that conjugate of cos x - i sin 2x is sin x + i cos 2x .

and conjugate of cos x - i sin 2x  is cos x + i sin 2x .

According to the question,

cos x + i sin 2x = sin x + i cos 2x

Comparing the real and imaginary parts of the above equation, we have

cos x = sin x and sin 2x = cos 2x 

⇒ tan x = 1 and  tan 2x = 1

⇒ x = π/ 4 and x = π/ 8

Which is not possible for at the same time. 

Therefore, no solution exists.

The conjugate of the complex number 1i31+i3 is

  1. 1232i
  2. 1232i
  3. 12+32i
  4. 12+32i

Answer (Detailed Solution Below)

Option 4 : 12+32i

Conjugate of Complex Number Question 15 Detailed Solution

Download Solution PDF

Concept: 

Let z = x + iy be a complex number.

  • Modulus of z = |z|=x2+y2=Re(z)2+Im(z)2
  • arg (z) = arg (x + iy) = tan1(yx)
  • Conjugate of z = z̅ = x – iy


Calculation:

Given that:

1i31+i3

Multiply numerator and denominator both by (1 - i√3), we get

(1i31+i3)×(1i31i3) = (1i3)2(1)2(i3)2 = [1+(i3)22i3]1+3 = (22i3]4 = 1232i

Conjugate of z = z̅ = x – iy

Here z =  1232i 

 z̅ =  12+32i

Get Free Access Now
Hot Links: teen patti bodhi teen patti master 2023 teen patti app teen patti winner teen patti