Collinearity of points MCQ Quiz - Objective Question with Answer for Collinearity of points - Download Free PDF

Last updated on Apr 11, 2025

Latest Collinearity of points MCQ Objective Questions

Collinearity of points Question 1:

The points (-5, 1), (1, k) and (4, -2) are collinear if the value of k is

  1. -1
  2. 2
  3. 3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -1

Collinearity of points Question 1 Detailed Solution

Given:

Points: (-5, 1), (1, k), and (4, -2)

Formula used:

For three points to be collinear, the area of the triangle formed by them must be zero.

Area of a triangle using coordinates:

Area = (1/2) × [x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]

Calculation:

Since the points are collinear:

(1/2) × [-5(k + 2) + 1(-2 - 1) + 4(1 - k)] = 0

-5(k + 2) + 1(-3) + 4(1 - k) = 0

-5k - 10 - 3 + 4 - 4k = 0

-9k - 9 = 0

-9k = 9

k = -1

∴ The value of k is -1.

Collinearity of points Question 2:

If the line passes through the points P(6,1,2),Q(8,7,2λ) and R(5,2,4) then value of λ is ________.

  1. 3
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Collinearity of points Question 2 Detailed Solution

Calculation

Since a line passes through P, Q and R, PQ must be a linear multiple of PR.

i.e., 2i^6j^+(2λ2)k^ = n(i^+3j^+2k^)

Equating LHS and RHS, we get n=2 and λ=1

Hence option 3 is correct

Collinearity of points Question 3:

If the points with position vectors αî + 10ĵ + 13k̂, 6î +11ĵ +11k̂, 92î + βĵ - 8k̂  are collinear, then (19α – 6β)2 is equal to 

  1. 49 
  2. 36
  3. 25 
  4. 16

Answer (Detailed Solution Below)

Option 2 : 36

Collinearity of points Question 3 Detailed Solution

Concept -

If point (α1, β1, γ_1), (α2, β2, γ2), (α3, β3, γ2) are collinear, then α1α2α2α3=β1β2β2β3=γ1γ2γ2γ3

Explanation -

Given: Points with position vectors

αi^+10j^+13k^,6i^+11j^+11k^

and 92i^+βj^8k^ are collinear.

So,  α6692=101111β=131111+8

⇒ 2(α6)3=111β=219

⇒ 23(α6)=219 

⇒ 19α - 114 = 3 ⇒ 19α = 117 

⇒ α=11719

And, 111β=219

⇒ -19 = 22 - 2β

⇒ 2β = 41

⇒ β=412

∴ (19α6β)2=(19×117196×412)2 

= (117 - 123)= 36

Hence Option (2) is correct.

Collinearity of points Question 4:

If points (a, 0), (0, b) and (1, 1) are collinear, then (a−1 + b−1) will be equal to :

  1. −1
  2. −2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Collinearity of points Question 4 Detailed Solution

Given: 

Collinear points (a,0), (0,b) and (1,1)

Concept:

If points are collinear then

Area of the triangle having coordinates as (x1 , y1), (x, y2), and (x3 , y3) is 0

i.e., 12|x1(y2 - y3) + x2(y3 - y1) + x3(y- y2)| = 0

Solution:

⇒  12|x1(y2 - y3) + x2(y3 - y1) + x3(y- y2)| = 0
⇒  |a(b - 1) + 0(1 - 0) + 1(0 - b)| = 0

⇒  ab - a - b = 0

⇒ ab = a + b

⇒ 1 = a+bab

⇒ 1a+1b=1

⇒ a-1 + b-1 = 1

Hence, Option 3 is correct

Collinearity of points Question 5:

If the points with coordinates (-5, 0), (5p2, 10p) and (5q2, 10q) are collinear, then what is the value of pq where p ≠ q ?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Collinearity of points Question 5 Detailed Solution

Concept:

1). The area of the triangle formed by three vertices that are collinear is zero.

2). Area of a triangle formed by (x1​,y1​), (x2​,y2​), and (x3​,y3​) is given by,

     Area = 12​[x1​(y​- y3​) + x2​(y​− y1​) + x3​(y​− y2​)]

Calculation:

Given,

Points with coordinates (-5, 0), (5p2, 10p) and (5q2, 10q) are collinear

∴  Area of △ABC=0

We know that,

Area of a triangle formed by (x1​,y1​), (x2​,y2​), and (x3​,y3​) is given by,

Area = 12​[x1​(y​- y3​) + x2​(y​− y1​) + x3​(y​− y2​)]

∴ Area of △ABC = 12[-5(10p − 10q) + 5p2(10q − 0) + 5q2(0 − 10p)]

⇒ 0 = -50p + 50q + 50p2q - 50q2p

0 = 50(q - p) + 50(p2q - q2p)

⇒ 50(p - q) = 50(p2q - q2p)

(p - q) = (p2q - q2p)

(p - q)  = pq(p - q

⇒ pq = 1           [p ≠ q]

∴ The value of pq = 1

Top Collinearity of points MCQ Objective Questions

If the points (k, 4, 2), (6, 2, - 1) and (8, - 2, - 7) are collinear, then find the value of k.

  1. 2
  2. 3
  3. 7
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Collinearity of points Question 6 Detailed Solution

Download Solution PDF

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0

CALCULATION:
 
Given: The points (k, 4, 2), (6, 2, - 1) and (8, - 2, - 7) are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0
Here, x1 = k, y1 = 4, z1 = 2, x2 = 6, y2 = 2, z2 = - 1, x3 = 8, y3 = - 2 and z3 = - 7
 
⇒ |k42621827|=0
 
⇒ k × (- 14 - 2) - 4 × (- 42 + 8) + 2 × (- 12 - 16) = 0
 
⇒ - 16k + 136 - 56 = 0
 
⇒ 16k = 80
 
⇒ k = 5
 
Hence, option D is the correct answer.

If the points (2, 3, 4), (- 1, - 2, 1) and (5, 8, k) are collinear, then find the value of k.

  1. 7
  2. 5
  3. 3
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 7

Collinearity of points Question 7 Detailed Solution

Download Solution PDF

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0

CALCULATION:
 
Given: The points (2, 3, 4), (- 1, - 2, 1) and (5, 8, k) ​are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then |x1y1z1x2y2z2x3y3z3|=0
Here, x1 = 2, y1 = 3, z1 = 4, x2 = - 1, y2 = - 2, z2 = 1, x3 = 5, y3 = 8 and z3 = k
 
⇒ |23412158k|=0
 
⇒ 2 × (- 2k - 8) - 3 × (- k - 5) + 4 × (- 8 + 10) = 0
 
⇒ - 4k - 16 + 3k + 15 + 8 = 0
 
⇒ k = 7
 
Hence, option A is the correct answer.

For what value of α + β, the three points (α, β), (5, 0), (0, 5) will be collinear?

  1. 5
  2. -25
  3. 0
  4. 25

Answer (Detailed Solution Below)

Option 1 : 5

Collinearity of points Question 8 Detailed Solution

Download Solution PDF

Concept:

If three points are collinear then the area of the triangle formed from these 3 points will be 0.

[as the collinear points lie on the same straight line]

Analysis:

Area of triangle passing through the points

(x, y), (x2, y2) and (x3, y3) is given by:

A=12[x,(y2y3)+x2(y3y1)+x3(y1y2)]

(x1, y1 = α, β); (x2, y2 = 5, 0); (x3, y3 = 0, 5)

∴ A=12[α(5)+5(5β)+0] 

-5α + 25 – 5β = 0

α + β = 5

If point (a, 0), (0, b) and (1, 1) are collinear, then 1a+1b is equal to

  1. 1
  2. √2
  3. -1
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1

Collinearity of points Question 9 Detailed Solution

Download Solution PDF

Concept:

If three points (x1, y1), (x2, y2) and (x3, y3) are collinear then the area of the triangle determined by the three points is zero.

|x1y11x2y21x3y31|=0

or

If three or more points are collinear then the slope of any two pairs of points is same.

For example, let three points A, B and C are collinear then

slope of AB = slope of BC = slope of AC

Slope of the line if two points (x1,y1)and(x2,y2) are given by: 

(m)=y2y1x2x1

Calculation:

Given: the points (a, 0), (0, b) and (1, 1)  are collinear

|a010b1111|=0a(b1)(0)(01)+1(0b)=0

ab - a - b = 0

a + b = ab

1a+1b=1

If the points (1, 3, -2), (2, λ, 1) and (3, 4, -1) are collinear then λ is

  1. 1
  2. 2
  3. 3
  4. 4

Answer (Detailed Solution Below)

Option 1 : 1

Collinearity of points Question 10 Detailed Solution

Download Solution PDF

Concept:

For the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) to be collinear

|x1y1z1x2y2z2x3y3z3|=0

Calculation:

The given points are (1, 3, -2), (2, λ, 1) and (3, 4, -1)

The equation of the plane will be 

|1322λ1341|=0

⇒ 1(-λ - 4) - 3(-2 - 3) + (-2)(8 - 3λ) = 0

⇒ 5λ - 4 + 15 - 16 = 0

⇒ 5λ = 5

⇒ λ = 1

The value of p for which the points (-1, 3), (2, p) and (5, -1) are collinear is

  1. 1
  2. 2
  3. -1
  4. -2

Answer (Detailed Solution Below)

Option 1 : 1

Collinearity of points Question 11 Detailed Solution

Download Solution PDF

Formula used:

Area of a triangle:

Let coordinates be A(x1, y1), B(x2, y2) and C(x3, y3),

then the area of a triangle is given as,

Δ =  12[x1 ( y2 -  y3 ) + x2 ( y3 - y) + x3 ( y- y2 )]

Note: If the point A, B, C are collinear then 

The area of Δ ABC should be equal to zero.

Calculation:

Given that,

(-1, 3), (2, p) and (5, -1) are collinear.

⇒ Area of Δ ABC = 0

∵ Δ =  12[x1 ( y2 -  y3 ) + x2 ( y3 - y) + x3 ( y- y2 )]

⇒ 12[-1{p - (-1)} + 2(-1 - 3) + {5(3 - p)] = 0

⇒ -p - 1 + 2 × (-4) + 15 - 5p = 0

⇒ -6p + 6 = 0

p = 1

If the points with coordinates (-5, 0), (5p2, 10p) and (5q2, 10q) are collinear, then what is the value of pq where p ≠ q ?

  1. -2
  2. -1
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Collinearity of points Question 12 Detailed Solution

Download Solution PDF

Concept:

1). The area of the triangle formed by three vertices that are collinear is zero.

2). Area of a triangle formed by (x1​,y1​), (x2​,y2​), and (x3​,y3​) is given by,

     Area = 12​[x1​(y​- y3​) + x2​(y​− y1​) + x3​(y​− y2​)]

Calculation:

Given,

Points with coordinates (-5, 0), (5p2, 10p) and (5q2, 10q) are collinear

∴  Area of △ABC=0

We know that,

Area of a triangle formed by (x1​,y1​), (x2​,y2​), and (x3​,y3​) is given by,

Area = 12​[x1​(y​- y3​) + x2​(y​− y1​) + x3​(y​− y2​)]

∴ Area of △ABC = 12[-5(10p − 10q) + 5p2(10q − 0) + 5q2(0 − 10p)]

⇒ 0 = -50p + 50q + 50p2q - 50q2p

0 = 50(q - p) + 50(p2q - q2p)

⇒ 50(p - q) = 50(p2q - q2p)

(p - q) = (p2q - q2p)

(p - q)  = pq(p - q

⇒ pq = 1           [p ≠ q]

∴ The value of pq = 1

The points P(3, 2, 4), Q(4, 5, 2), R(5, 8, 0) and S(2 -1, 6) are

  1. vertices of a rhombus which is not a square
  2. non-coplanar
  3. collinear
  4. coplanar but not collinear

Answer (Detailed Solution Below)

Option 3 : collinear

Collinearity of points Question 13 Detailed Solution

Download Solution PDF

Concept:

Let A(x1, y1, z1) and B(x2, y2, z2)

  • DistancebetweenAandB=(x2x1)2+(y2y1)2+(z2z1)2

Calculation:

Given points are P(3, 2, 4), Q(4, 5, 2), R(5, 8, 0) and S(2 -1, 6).

PQ=(43)2+(52)2+(24)2=1+9+4=14

QR=(54)2+(85)2+(02)2=1+9+4=14 

RS=(25)2+(18)2+(60)2=9+81+36=126=314

PS=(23)2+(12)2+(64)2=1+9+4=14 

Here, We can write 3√14 = √14 + √14 + √14

RS = PQ + QR + PS

So, points are collinear.

If points (a, 0), (0, b) and (1, 1) are collinear, then (a+bab) =

  1. -1
  2. √2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Collinearity of points Question 14 Detailed Solution

Download Solution PDF

Given:

(x1, y1) = (a, 0)

(x2, y2) = (0, b)

(x3, y3) = (1, 1)

Formula Used:

Area of triangle = (1/2)[x(y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)]

Concept:

If points are collinear, then the area of triangle is zero.

Calculation: 

Area of triangle = (1/2)[x(y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)] = 0

⇒ Area of triangle = (1/2)[a (b - 1) + 0 (1 - 0) + 1 (0 - b)] = 0

⇒ Area of triangle = (1/2)[ab - a - b] = 0

⇒ Area of triangle = ab - a - b = 0

⇒ ab = a + b

a+bab = 1

Hence, a+bab=1

If the three points A(1, 6), B(3, -4) and C(x, y) are collinear, then

  1. 5x + y - 11 = 0
  2. 5x - y - 11 = 0
  3. 11x + 5y - 11 = 0
  4. 5x - y + 11 = 0

Answer (Detailed Solution Below)

Option 1 : 5x + y - 11 = 0

Collinearity of points Question 15 Detailed Solution

Download Solution PDF

Formula used:

Area of triangle:

Let coordinates be A(x1, y1), B(x2, y2) and C(x3, y3),

then the area of a triangle is given as,

Δ =  12[x1 ( y2 -  y3 ) + x2 ( y3 - y) + x3 ( y- y2 )]

Calculation:

Given that,

A(1, 6), B(3, -4) and C(x, y) are collinear.

Area of Δ ABC = 0

∵ Δ =  12[x1 ( y2 -  y3 ) + x2 ( y3 - y) + x3 ( y- y2 )]

⇒ 12[1(-4 - y) + 3(y - 6) + x[6 - (-4)] = 0

⇒ -4 - y + 3y - 18 + 6x + 4x = 0

⇒ 10x + 2y - 22 = 0

⇒ 5x + y - 11 = 0

Get Free Access Now
Hot Links: teen patti online teen patti real teen patti list