ABCD Parameters MCQ Quiz - Objective Question with Answer for ABCD Parameters - Download Free PDF
Last updated on Jun 10, 2025
Latest ABCD Parameters MCQ Objective Questions
ABCD Parameters Question 1:
For a two port symmetric bilateral network, if A= 3Ω and B = 1Ω, the value of parameter C will be
Answer (Detailed Solution Below)
ABCD Parameters Question 1 Detailed Solution
Explanation:
Two-Port Symmetric Bilateral Network
Definition: A two-port symmetric bilateral network is a type of electrical network that has two pairs of terminals, referred to as "ports." The network is termed symmetric when certain parameters are equal, and it is bilateral when the network behaves identically when the input and output ports are interchanged. These networks are often analyzed using transmission parameters (A, B, C, D), where the relationships between input and output voltages and currents are described as:
Equations:
\( V_1 = A \cdot V_2 + B \cdot I_2 \)
\( I_1 = C \cdot V_2 + D \cdot I_2 \)
For symmetric networks, the parameters satisfy the following conditions:
- \( A = D \) (Symmetry condition)
- \( A \cdot D - B \cdot C = 1 \) (Reciprocity condition)
Given:
- \( A = 3 \, \Omega \)
- \( B = 1 \, \Omega \)
We need to determine the value of the parameter \( C \).
Step 1: Use the Reciprocity Condition
From the reciprocity condition, we know:
\( A \cdot D - B \cdot C = 1 \)
Since the network is symmetric, \( A = D \). Substituting \( A = 3 \, \Omega \) and \( B = 1 \, \Omega \), we get:
\( 3 \cdot 3 - 1 \cdot C = 1 \)
\( 9 - C = 1 \)
Step 2: Solve for \( C \)
Rearranging the equation:
\( C = 9 - 1 \)
\( C = 8 \, \text{s} \)
Thus, the value of the parameter \( C \) is \( 8 \, \text{s} \).
Step 3: Evaluate the Correct Option
From the options provided, the correct answer corresponds to:
- Option 1: \( 8 \, \text{s} \)
Important Information:
To analyze why the other options are incorrect, let us revisit the reciprocity condition:
\( A \cdot D - B \cdot C = 1 \)
For a symmetric network:
- \( A = D = 3 \, \Omega \)
- \( B = 1 \, \Omega \)
Substituting these values into the equation, we calculated \( C = 8 \, \text{s} \). Any other value for \( C \) would violate the reciprocity condition. Let’s examine the incorrect options:
Option 2: \( C = 6 \, \text{s} \)
If \( C = 6 \, \text{s} \), substituting into the reciprocity condition:
\( 3 \cdot 3 - 1 \cdot 6 = 9 - 6 = 3 \)
Here, the result is \( 3 \), which does not satisfy the reciprocity condition (\( A \cdot D - B \cdot C = 1 \)). Thus, this option is incorrect.
Option 3: \( C = 4 \, \text{s} \)
If \( C = 4 \, \text{s} \), substituting into the reciprocity condition:
\( 3 \cdot 3 - 1 \cdot 4 = 9 - 4 = 5 \)
Here, the result is \( 5 \), which does not satisfy the reciprocity condition. Thus, this option is incorrect.
Option 4: \( C = 16 \, \text{s} \)
If \( C = 16 \, \text{s} \), substituting into the reciprocity condition:
\( 3 \cdot 3 - 1 \cdot 16 = 9 - 16 = -7 \)
Here, the result is \( -7 \), which does not satisfy the reciprocity condition. Thus, this option is incorrect.
Option 5: \( C = 1 \, \text{s} \)
If \( C = 1 \, \text{s} \), substituting into the reciprocity condition:
\( 3 \cdot 3 - 1 \cdot 1 = 9 - 1 = 8 \)
While the arithmetic is correct, the parameter \( C \) is defined as a reciprocal value in seconds (\( \text{s} \)), and the units here do not align with the requirements of the problem. Thus, this option is also incorrect.
Conclusion:
The correct value of \( C \) in the given two-port symmetric bilateral network is \( 8 \, \text{s} \), satisfying the reciprocity condition. This corresponds to Option 1. The other options fail to meet the necessary conditions or have incorrect units, as demonstrated in the analysis above.
ABCD Parameters Question 2:
Find the Z parameters (Z11, Z12, Z21 Z22. respectively) for the above network.
Answer (Detailed Solution Below)
ABCD Parameters Question 2 Detailed Solution
Solution:
To find the Z parameters (Z11, Z12, Z21, Z22) for the given network, we need to understand the two-port network analysis. The Z-parameters or impedance parameters are defined by the following set of equations:
V1 = Z11I1 + Z12I2
V2 = Z21I1 + Z22I2
Where:
- V1 is the input voltage
- V2 is the output voltage
- I1 is the input current
- I2 is the output current
To determine the Z-parameters, we need to perform the following steps:
Step 1: Calculate Z11
Z11 is found by setting I2 = 0 (open-circuit output). Under this condition, the input impedance is:
Z11 = V1 / I1 (with I2 = 0)
Step 2: Calculate Z12
Z12 is found by setting I2 = 0 (open-circuit output). Under this condition, the reverse transfer impedance is:
Z12 = V1 / I2 (with I1 = 0)
Step 3: Calculate Z21
Z21 is found by setting I1 = 0 (open-circuit input). Under this condition, the forward transfer impedance is:
Z21 = V2 / I1 (with I2 = 0)
Step 4: Calculate Z22
Z22 is found by setting I1 = 0 (open-circuit input). Under this condition, the output impedance is:
Z22 = V2 / I2 (with I1 = 0)
Let's now solve these for the given options:
Correct Option Analysis:
The correct option is:
Option 3: 30Ω, 20Ω, 20Ω, 30Ω
We will validate this by calculating each of the Z parameters for the given network:
Z11:
Given that I2 = 0, V1 = Z11I1. If Z11 = 30Ω, then:
V1 = 30Ω × I1
Z12:
Given that I2 = 0 and assuming Z12 = 20Ω, then:
V1 = 20Ω × I2
Z21:
Given that I1 = 0 and assuming Z21 = 20Ω, then:
V2 = 20Ω × I1
Z22:
Given that I1 = 0, V2 = Z22I2. If Z22 = 30Ω, then:
V2 = 30Ω × I2
Thus, the Z-parameters are correctly given by option 3: Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, Z22 = 30Ω.
Let's analyze the other options to understand why they are incorrect:
Option 1: 40Ω, 20Ω, 20Ω, 40Ω
While Z12 and Z21 are the same as in the correct answer, Z11 and Z22 are different. For the given network, these values do not match the correct Z-parameter values.
Option 2: 40Ω, 30Ω, 30Ω, 40Ω
All the Z-parameter values here differ from the correct option. These values do not satisfy the given network's conditions.
Option 4: 30Ω, 30Ω, 30Ω, 30Ω
In this case, Z12 and Z21 are incorrectly given as 30Ω instead of 20Ω. This does not align with the correct Z-parameter values.
Conclusion:
By understanding the principles of Z-parameters and carefully analyzing the network, we have determined that the correct Z-parameters for the given network are Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, and Z22 = 30Ω, which corresponds to option 3.
ABCD Parameters Question 3:
The ABCD constants of this series impedance are\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\,\)Which of the following represents the B parameter?
Answer (Detailed Solution Below)
ABCD Parameters Question 3 Detailed Solution
Concept:
ABCD Parameter:
We know that the ABCD parameter of the transmission line
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\ \)
A = D
AD – BC = 1
\(\left[{\begin{array}{*{20}{c}} A&B\\ C&D \end{array}}\right]\)= \(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\)
So, B = 8
Conditions of reciprocity and symmetry in terms of different two-port parameters are:
Parameter |
Conditions of reciprocity |
Conditions of symmetry |
Z |
z12 = z21 |
z11 = z22 |
Y |
y12 = y21 |
y11 = y22 |
T(ABCD) |
(AD – BC) = 1 |
A = D |
h |
h12 = -h21 |
(h11h22 – h12h21) = 1 |
ABCD Parameters Question 4:
Considering the transformer to be ideal, the correct transmission parameter is/are
The 2-port network shown in the figure below is
Answer (Detailed Solution Below)
ABCD Parameters Question 4 Detailed Solution
Concept:
The T-parameters of the cascaded network are obtained by multiplying the T-parameters of the individual networks.
For circuit:
\(T=\left[ \begin{matrix} 1 & {{Z}_{1}} \\ 0 & 1 \\ \end{matrix} \right]\;\)
For circuit
\(T=\left[ \begin{matrix} 1 & 0 \\ {{y}_{2}} & 1 \\ \end{matrix} \right]\;\)
ABCD parameters of the transformer circuit
\(T = \left[ {\begin{array}{*{20}{c}} {\frac{1}{a}}&0\\ 0&a \end{array}} \right]\)
Calculation:
\(T = \begin{bmatrix} 1 & 0\\ 1/5 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1/2 & 0\\ 0 & 2\end{bmatrix} \begin{bmatrix} 1 & 0\\ 1/5 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix}\)
\(T = \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix} \begin{bmatrix} 1/2 & 0\\ 0 & 2\end{bmatrix} \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix}\)
\(T = \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix} \begin{bmatrix} 1/2 & 1\\ 2/5 & 14/5\end{bmatrix}\)
\(T=\begin{bmatrix} 1.3 & 6.6\\ 0.66 & 4.12\end{bmatrix}\)
Comparing with T-parameter
\(T=\begin{bmatrix} A & B\\ C & D\end{bmatrix}\)
A = 1.3
B = 6.6
C = 0.66
D = 4.12
ABCD Parameters Question 5:
With respect to inverse transmission parameter, which of the following options is correct?
Answer (Detailed Solution Below)
ABCD Parameters Question 5 Detailed Solution
ABCD or Transmission Parameter :
Dependent Variable : V1 and I1
Independent Variable : V2 and I2
V1 = A V2 - BI2
I1 = CV2 - DI2
abcd or Inverse Transmission Parameter :
Dependent Variable : V2 and I2
Independent Variable : V1 and I1
V2 = a V1 - b I1
I2 = cV1 - dI1
Top ABCD Parameters MCQ Objective Questions
For the two-port network shown in the figure, the transmission parameter C is:
Answer (Detailed Solution Below)
ABCD Parameters Question 6 Detailed Solution
Download Solution PDFConcept:
Transmission or ABCD parameters
General two-port network and Transmission parameters two-port network is shown below.
Transmission 2 port network
The direction of I2 is opposite to the standard form so it is taken as negative.
Transmission parameters are defined as:
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\)
V1 and I1 are dependent and V2 and I2 are independent.
Calculation:
From the ABCD parameters matrix, we get the following equations.
V1 = A V2 – B I2 ---(1)
I1 = C V2 - D I2 ---(2)
To calculate C, we open circuit the output terminal as shown:
Using Equation (1), we get:
I1 = C V2
\(C=\frac{I_1}{V_2}\)
Since I2 = 0, the current across Zb will be I1, i.e.
V2 = I1 × Zb
\(\frac{I_1}{V_2}=C=\frac{1}{Z_b}\)
The condition for reciprocity for a two-port transmission network is expressed by
Answer (Detailed Solution Below)
ABCD Parameters Question 7 Detailed Solution
Download Solution PDFConditions for symmetry and reciprocity:
Parameter |
Symmetry |
Reciprocity |
Z |
Z11 = Z22 |
Z12 = Z21 |
Y |
Y11 = Y22 |
Y12 = Y21 |
ABCD |
A = D |
|AD - BC| = 1 |
h |
h11h22 - h12h21 = 1 |
h12 = -h21 |
What is transmission matrix of ideal transformer with turns ratio n : 1 (ie. V1 = nV2)
Answer (Detailed Solution Below)
ABCD Parameters Question 8 Detailed Solution
Download Solution PDFThe two-port networks of n : 1 ideal transformer is shown below.
V1 = nV2
\({I_2} = - n{I_1} \Rightarrow {I_1} = \frac{{ - 1}}{n}{I_2}\)
ABCD parameters of a two-port network can be represented as follows.
V1 = A V2 – B I2
I1 = C V2 – D I2
The equations of ideal transformer are
V1 = n V2 – 0 I2
\({I_1} = 0{V_2} - \frac{1}{n}{I_2}\)
By comparing with standard equations,
A = n, B = 0, c = 0, \(D = \frac{1}{n}\)
\(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} n&0\\ 0&{\frac{1}{n}} \end{array}} \right]\)
The given matrix describes the transformer in terms of ABCD parameters.
For a 2-port symmetrical bilateral network, if transmission parameters A = 3 and B = 1 Ω. The value of parameter C is
Answer (Detailed Solution Below)
ABCD Parameters Question 9 Detailed Solution
Download Solution PDFConcept:
We know that the ABCD parameter of transmission line
\(\rm \left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right] \)
For symmetrical network:
A = D
For reciprocity network:
AD – BC
Analysis:
For symmetrical network A = D = 3
For bilateral AD – BC = 1
9 – C = 1
C = 8
Conditions of reciprocity and symmetry in terms of different two-port parameters are:
Parameter |
Conditions of reciprocity |
Conditions of symmetry |
Z |
z12 = z21 |
z11 = z22 |
Y |
y12 = y21 |
y11 = y22 |
T(ABCD) |
(AD – BC) = 1 |
A = D |
h |
h12 = -h21 |
(h11h22 – h12h21) = 1 |
The ABCD constants of this series impedance are\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\,\)Which of the following represents the B parameter?
Answer (Detailed Solution Below)
ABCD Parameters Question 10 Detailed Solution
Download Solution PDFConcept:
ABCD Parameter:
We know that the ABCD parameter of the transmission line
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\ \)
A = D
AD – BC = 1
\(\left[{\begin{array}{*{20}{c}} A&B\\ C&D \end{array}}\right]\)= \(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\)
So, B = 8
Conditions of reciprocity and symmetry in terms of different two-port parameters are:
Parameter |
Conditions of reciprocity |
Conditions of symmetry |
Z |
z12 = z21 |
z11 = z22 |
Y |
y12 = y21 |
y11 = y22 |
T(ABCD) |
(AD – BC) = 1 |
A = D |
h |
h12 = -h21 |
(h11h22 – h12h21) = 1 |
Direction: The following item consists of two statements, one labeled as ‘Statement (I) and the other as ‘Statement (II). You are to examine these two statements carefully and select the answers to these items using the code given below:
Statement (I): ABCD parameters are widely used in the analysis of power transmission engineering and termed as circuit parameters.
Statement (II): ABCD parameters are called as transmission parameters.
Answer (Detailed Solution Below)
ABCD Parameters Question 11 Detailed Solution
Download Solution PDFConcept:
There are four variables V1, V2, I1, and I2 in a two-port network as shown in the figure:
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\)
Where,
\(A= {\left. {\frac{{{V_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)
\(B=- {\left. {\frac{{{V_1}}}{{{I_2}}}} \right|_{{V_2} = 0}}\)
\(C= {\left. {\frac{{{I_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)
\(D=\; - {\left. {\frac{{{I_1}}}{{{I_2}}}} \right|_{{V_2} = 0}}\)
- T parameters are called as the transmission parameters or ABCD parameters (Reason is true).
- The parameters, A and D do not have any units, since these are dimensionless.
- The units of parameters, B and C are ohm and mho respectively.
- These parameters are used for the analysis of an electrical network.
- It is also used for determining the performance of input voltage, output voltage, and current of the transmission network. (Assertion is true).
- ABCD parameters are also known as transmission parameters because they provide a link between supply and receiving end voltages and currents considering the circuit elements to be linear. (Statement 2 is not the correct explanation to statement 1)
A two port network N has transmission parameters \(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\). The open circuit input impedance of the network at port 1, will be
Answer (Detailed Solution Below)
ABCD Parameters Question 12 Detailed Solution
Download Solution PDFGiven that a two port network N has transmission parameters \(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\)
Then the equations will be
\({V_1} = A{V_2} + B{I_2}\)
\({I_1} = C{V_2} + D{I_2}\)
The input impedance of the network at port 1 is,
\(\frac{{{V_1}}}{{{I_1}}}\;at\;{I_2} = 0\)
\(\Rightarrow \frac{{{V_1}}}{{{I_1}}} = \frac{{A{V_2}}}{{C{V_2}}} = \frac{A}{C}\)Consider a two-port network with the transmission matrix: \({\rm{T}} = \left( {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right).\) If the network is reciprocal, then
Answer (Detailed Solution Below)
ABCD Parameters Question 13 Detailed Solution
Download Solution PDFConcept:
Two Port Parameters |
Condition for Symmetry |
Condition for Reciprocal |
Z Parameters |
Z11 = Z22 |
Z21 = Z12 |
Y parameters |
Y11 = Y22 |
Y12 = Y21 |
ABCD parameters |
A = D |
AD - BC = 1 |
H parameters |
\( {h_{11}}{h_{22}}-{h_{12}}{h_{21}} = 1\) |
\({h_{12}} = -\;{h_{21}}\) |
Application:
Given \({\rm{T}} = \left[ {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right]\)
The two-port network is symmetric if A = D and reciprocal if AD – BC = 1
∴ Determinant (T) = 1The ABCD matric for a two-port network is defined by:
\(\left[ {\begin{array}{*{20}{c}} {{{\rm{V}}_1}}\\ {{{\rm{I}}_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\rm{V}}_2}}\\ { - {{\rm{I}}_2}} \end{array}} \right]\)
Answer (Detailed Solution Below) 4.3 - 5.3
ABCD Parameters Question 14 Detailed Solution
Download Solution PDFConcept:
ABCD parameter equation is defined as:
V1 = AV2 – BI2
I1 = CV2 – DI2
Application:
\({\rm{B}} = {\left. {\frac{{{{\rm{V}}_1}}}{{ - {{\rm{I}}_2}}}} \right|_{{{\rm{V}}_2} = 0}}\)
From the above network, we can write:
\({{\rm{I}}_1} = \frac{{{{\rm{V}}_1}}}{{{{\rm{R}}_{{\rm{eq}}}}}} = \frac{{{{\rm{V}}_1}}}{{2 + 5||2}}\)
\(- {{\rm{I}}_2} = {{\rm{I}}_1} \times \frac{5}{7} \)
\(-I_2= \frac{{5{{\rm{V}}_1}}}{{24}}\)
\(-I_2= \frac{5}{7} \times \frac{{{{\rm{V}}_1}}}{{2 + \frac{{10}}{7}}} \)
\(\frac{{{{\rm{V}}_1}}}{{ - {{\rm{I}}_2}}} = \frac{{24}}{5} = 4.8 = {\rm{B}}\)
Two passive two-port networks are connected in cascade as shown in figure. A voltage source is connected at port 1.
Given V1 = A1V2 + B1I2
I1 = C1V2 + D1I2
V2 = A2V3 + B2I3
I2 = C2V3 + D2I3
A1, B1, C1, D1, A2, B2, C2, and D2 are the generalized circuit constants. If the Thevenin equivalent circuit at port 3 consists of a voltage source VT and an impedance ZT connected in series, then
Answer (Detailed Solution Below)
ABCD Parameters Question 15 Detailed Solution
Download Solution PDFConcept:
The equivalent transmission parameter for the cascade network is the product of the individual transmission parameter.
\({\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_{Total}} = {\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_1}{\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_2}\)
Calculation:
We can write as follows.
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{A_1}}&{{B_1}}\\ {{C_1}}&{{D_1}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{A_2}}&{{B_2}}\\ {{C_2}}&{{D_2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_3}}\\ {{I_3}} \end{array}} \right]\)
\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\left( {{A_1}{A_2} + {B_1}{C_2}} \right)}&{\left( {{A_1}{B_2} + {B_1}{D_2}} \right)}\\ {\left( {{C_1}{A_2} + {D_1}{C_2}} \right)}&{\left( {{C_1}{B_2} + {D_1}{D_2}} \right)} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_3}}\\ {{I_3}} \end{array}} \right]\)
For Zth, V1 = 0
\(\Rightarrow {Z_{th}} = \frac{{{V_3}}}{{\left( { - {I_3}} \right)}}\)
V1 = (A1A2 + B1C2)V3 + (A1B2 + B1D2)I3 = 0
\({Z_{th}} = \frac{{{V_3}}}{{\left( { - {I_3}} \right)}} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2} + {B_1}{C_2}}}\)
For Vth, I3 = 0, V3 = Vth
V1 = (A1A2 + B1C2)Vth
\(\Rightarrow {V_{th}} = \frac{{{V_1}}}{{\left( {{A_1}{A_2} + {B_1}{C_2}} \right)}}\)