ABCD Parameters MCQ Quiz - Objective Question with Answer for ABCD Parameters - Download Free PDF

Last updated on Jun 10, 2025

Latest ABCD Parameters MCQ Objective Questions

ABCD Parameters Question 1:

For a two port symmetric bilateral network, if A= 3Ω and B = 1Ω, the value of parameter C will be 

  1. 4s
  2. 6s
  3. 8s
  4. 16s

Answer (Detailed Solution Below)

Option 1 : 4s

ABCD Parameters Question 1 Detailed Solution

Explanation:

Two-Port Symmetric Bilateral Network

Definition: A two-port symmetric bilateral network is a type of electrical network that has two pairs of terminals, referred to as "ports." The network is termed symmetric when certain parameters are equal, and it is bilateral when the network behaves identically when the input and output ports are interchanged. These networks are often analyzed using transmission parameters (A, B, C, D), where the relationships between input and output voltages and currents are described as:

Equations:

    \( V_1 = A \cdot V_2 + B \cdot I_2 \)

    \( I_1 = C \cdot V_2 + D \cdot I_2 \)

For symmetric networks, the parameters satisfy the following conditions:

  • \( A = D \) (Symmetry condition)
  • \( A \cdot D - B \cdot C = 1 \) (Reciprocity condition)

Given:

  • \( A = 3 \, \Omega \)
  • \( B = 1 \, \Omega \)

We need to determine the value of the parameter \( C \).

Step 1: Use the Reciprocity Condition

From the reciprocity condition, we know:

    \( A \cdot D - B \cdot C = 1 \)

Since the network is symmetric, \( A = D \). Substituting \( A = 3 \, \Omega \) and \( B = 1 \, \Omega \), we get:

    \( 3 \cdot 3 - 1 \cdot C = 1 \)

    \( 9 - C = 1 \)

Step 2: Solve for \( C \)

Rearranging the equation:

    \( C = 9 - 1 \)

    \( C = 8 \, \text{s} \)

Thus, the value of the parameter \( C \) is \( 8 \, \text{s} \).

Step 3: Evaluate the Correct Option

From the options provided, the correct answer corresponds to:

  • Option 1: \( 8 \, \text{s} \)

Important Information:

To analyze why the other options are incorrect, let us revisit the reciprocity condition:

    \( A \cdot D - B \cdot C = 1 \)

For a symmetric network:

  • \( A = D = 3 \, \Omega \)
  • \( B = 1 \, \Omega \)

Substituting these values into the equation, we calculated \( C = 8 \, \text{s} \). Any other value for \( C \) would violate the reciprocity condition. Let’s examine the incorrect options:

Option 2: \( C = 6 \, \text{s} \)

If \( C = 6 \, \text{s} \), substituting into the reciprocity condition:

    \( 3 \cdot 3 - 1 \cdot 6 = 9 - 6 = 3 \)

Here, the result is \( 3 \), which does not satisfy the reciprocity condition (\( A \cdot D - B \cdot C = 1 \)). Thus, this option is incorrect.

Option 3: \( C = 4 \, \text{s} \)

If \( C = 4 \, \text{s} \), substituting into the reciprocity condition:

    \( 3 \cdot 3 - 1 \cdot 4 = 9 - 4 = 5 \)

Here, the result is \( 5 \), which does not satisfy the reciprocity condition. Thus, this option is incorrect.

Option 4: \( C = 16 \, \text{s} \)

If \( C = 16 \, \text{s} \), substituting into the reciprocity condition:

    \( 3 \cdot 3 - 1 \cdot 16 = 9 - 16 = -7 \)

Here, the result is \( -7 \), which does not satisfy the reciprocity condition. Thus, this option is incorrect.

Option 5: \( C = 1 \, \text{s} \)

If \( C = 1 \, \text{s} \), substituting into the reciprocity condition:

    \( 3 \cdot 3 - 1 \cdot 1 = 9 - 1 = 8 \)

While the arithmetic is correct, the parameter \( C \) is defined as a reciprocal value in seconds (\( \text{s} \)), and the units here do not align with the requirements of the problem. Thus, this option is also incorrect.

Conclusion:

The correct value of \( C \) in the given two-port symmetric bilateral network is \( 8 \, \text{s} \), satisfying the reciprocity condition. This corresponds to Option 1. The other options fail to meet the necessary conditions or have incorrect units, as demonstrated in the analysis above.

ABCD Parameters Question 2:

qImage67931bebf1b7c681ab26ab1d

Find the Z parameters (Z11, Z12, Z21 Z22. respectively) for the above network. 

  1. 40Ω, 20Ω, 20Ω, 40Ω, 
  2. 40Ω, 30Ω, 30Ω, 40Ω, 
  3. 30Ω, 20Ω, 20Ω, 30Ω, 
  4. 30Ω, 30Ω, 30Ω, 30Ω, 

Answer (Detailed Solution Below)

Option 3 : 30Ω, 20Ω, 20Ω, 30Ω, 

ABCD Parameters Question 2 Detailed Solution

Solution:

To find the Z parameters (Z11, Z12, Z21, Z22) for the given network, we need to understand the two-port network analysis. The Z-parameters or impedance parameters are defined by the following set of equations:

V1 = Z11I1 + Z12I2

V2 = Z21I1 + Z22I2

Where:

  • V1 is the input voltage
  • V2 is the output voltage
  • I1 is the input current
  • I2 is the output current

To determine the Z-parameters, we need to perform the following steps:

Step 1: Calculate Z11

Z11 is found by setting I2 = 0 (open-circuit output). Under this condition, the input impedance is:

Z11 = V1 / I1 (with I2 = 0)

Step 2: Calculate Z12

Z12 is found by setting I2 = 0 (open-circuit output). Under this condition, the reverse transfer impedance is:

Z12 = V1 / I2 (with I1 = 0)

Step 3: Calculate Z21

Z21 is found by setting I1 = 0 (open-circuit input). Under this condition, the forward transfer impedance is:

Z21 = V2 / I1 (with I2 = 0)

Step 4: Calculate Z22

Z22 is found by setting I1 = 0 (open-circuit input). Under this condition, the output impedance is:

Z22 = V2 / I2 (with I1 = 0)

Let's now solve these for the given options:

Correct Option Analysis:

The correct option is:

Option 3: 30Ω, 20Ω, 20Ω, 30Ω

We will validate this by calculating each of the Z parameters for the given network:

Z11:

Given that I2 = 0, V1 = Z11I1. If Z11 = 30Ω, then:

V1 = 30Ω × I1

Z12:

Given that I2 = 0 and assuming Z12 = 20Ω, then:

V1 = 20Ω × I2

Z21:

Given that I1 = 0 and assuming Z21 = 20Ω, then:

V2 = 20Ω × I1

Z22:

Given that I1 = 0, V2 = Z22I2. If Z22 = 30Ω, then:

V2 = 30Ω × I2

Thus, the Z-parameters are correctly given by option 3: Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, Z22 = 30Ω.

Let's analyze the other options to understand why they are incorrect:

Option 1: 40Ω, 20Ω, 20Ω, 40Ω

While Z12 and Z21 are the same as in the correct answer, Z11 and Z22 are different. For the given network, these values do not match the correct Z-parameter values.

Option 2: 40Ω, 30Ω, 30Ω, 40Ω

All the Z-parameter values here differ from the correct option. These values do not satisfy the given network's conditions.

Option 4: 30Ω, 30Ω, 30Ω, 30Ω

In this case, Z12 and Z21 are incorrectly given as 30Ω instead of 20Ω. This does not align with the correct Z-parameter values.

Conclusion:

By understanding the principles of Z-parameters and carefully analyzing the network, we have determined that the correct Z-parameters for the given network are Z11 = 30Ω, Z12 = 20Ω, Z21 = 20Ω, and Z22 = 30Ω, which corresponds to option 3.

ABCD Parameters Question 3:

The ABCD constants of this series impedance are\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\,\)Which of the following represents the B parameter?

  1. 1
  2. 8
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 2 : 8

ABCD Parameters Question 3 Detailed Solution

Concept:

ABCD Parameter:

We know that the ABCD parameter of the transmission line

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\ \)

A = D

AD – BC = 1

\(\left[{\begin{array}{*{20}{c}} A&B\\ C&D \end{array}}\right]\)\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\)

So, B = 8

Conditions of reciprocity and symmetry in terms of different two-port parameters are:

Parameter

Conditions of reciprocity

 Conditions of symmetry

Z

z12 = z21

z11 = z22

Y

y12 = y21

y11 = y22

T(ABCD)

(AD – BC) = 1

A = D

h

h12 = -h21

(h11h22 – h12h21)

= 1

ABCD Parameters Question 4:

Considering the transformer to be ideal, the correct transmission parameter is/are

The 2-port network shown in the figure below is

F1 Shraddha Neja 01.12.2021 D10

  1. D = 4.12
  2. C = 0.66
  3. B = 6.6 
  4. A = 1.3

Answer (Detailed Solution Below)

Option :

ABCD Parameters Question 4 Detailed Solution

Concept:

The T-parameters of the cascaded network are obtained by multiplying the T-parameters of the individual networks.

For circuit:

F1 R.D M.P 27.09.19 D9

\(T=\left[ \begin{matrix} 1 & {{Z}_{1}} \\ 0 & 1 \\ \end{matrix} \right]\;\)

For circuit

F1 R.D M.P 27.09.19 D10

\(T=\left[ \begin{matrix} 1 & 0 \\ {{y}_{2}} & 1 \\ \end{matrix} \right]\;\)

ABCD parameters of the transformer circuit

D.51

\(T = \left[ {\begin{array}{*{20}{c}} {\frac{1}{a}}&0\\ 0&a \end{array}} \right]\)

Calculation:

F1 Shraddha Neja 01.12.2021 D10

\(T = \begin{bmatrix} 1 & 0\\ 1/5 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1/2 & 0\\ 0 & 2\end{bmatrix} \begin{bmatrix} 1 & 0\\ 1/5 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix}\)

\(T = \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix} \begin{bmatrix} 1/2 & 0\\ 0 & 2\end{bmatrix} \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix}\)

\(T = \begin{bmatrix} 1 & 2\\ 1/5 & 7/5\end{bmatrix} \begin{bmatrix} 1/2 & 1\\ 2/5 & 14/5\end{bmatrix}\)

\(T=\begin{bmatrix} 1.3 & 6.6\\ 0.66 & 4.12\end{bmatrix}\)

Comparing with T-parameter

\(T=\begin{bmatrix} A & B\\ C & D\end{bmatrix}\)

A = 1.3

B = 6.6 

C = 0.66

D = 4.12

ABCD Parameters Question 5:

With respect to inverse transmission parameter, which of the following options is correct?

  1. (V1, V2) = f (I1, I2)
  2. (V1, I1) = f (V2, I2)
  3. (I1, I2) = f (V1, V2)
  4. (V2, I2) = f (V1, I1)

Answer (Detailed Solution Below)

Option 4 : (V2, I2) = f (V1, I1)

ABCD Parameters Question 5 Detailed Solution

ABCD or Transmission Parameter :

Dependent Variable  : V1 and I1

Independent Variable : V2 and I2

V1 = A V2 - BI2

I1 = CV2 - DI2

abcd or Inverse Transmission Parameter :

Dependent Variable  : V2 and I2

Independent Variable : V1 and I1

V2 = a V1 - b I1

I2 = cV1 - dI1

 

Top ABCD Parameters MCQ Objective Questions

For the two-port network shown in the figure, the transmission parameter C is:

F4 Shubham 16-10-2020 Swati D2

  1. Za
  2. \(1 + \frac{{{Z_a}}}{{{Z_b}}}\)
  3. Zb
  4. 1/Zb

Answer (Detailed Solution Below)

Option 4 : 1/Zb

ABCD Parameters Question 6 Detailed Solution

Download Solution PDF

Concept:

Transmission or ABCD parameters

General two-port network and Transmission parameters two-port network is shown below.

F1 S.B 1.9.20 Pallavi D2

Transmission 2 port network

F1 S.B 1.9.20 Pallavi D3

The direction of I2 is opposite to the standard form so it is taken as negative.

Transmission parameters are defined as:

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\)

V1 and I1 are dependent and V2 and I2 are independent.

Calculation:

From the ABCD parameters matrix, we get the following equations.

V= A V2 – B I2   ---(1)

I1 = C V2 - D I2   ---(2)

To calculate C, we open circuit the output terminal as shown:

F16 Shubham 30-11-2020 Swati D5

Using Equation (1), we get:

I1 = C V2 

\(C=\frac{I_1}{V_2}\)

Since I2 = 0, the current across Zb will be I1, i.e.

V2 = I1 × Zb

\(\frac{I_1}{V_2}=C=\frac{1}{Z_b}\)

The condition for reciprocity for a two-port transmission network is expressed by

  1. \(\left|\begin{array}{ll}\text{A} & \text{D} \\ \text{B} & \text{C}\end{array}\right|=1\)
  2. \(\left|\begin{array}{ll}\text{A} & \text{C} \\ \text{B} & \text{D}\end{array}\right|=0\)
  3. \(\left|\begin{array}{ll} \text{A} & \text{B} \\ \text{C} & \text{D} \end{array}\right|=0\)
  4. \(\left|\begin{array}{ll}\text{A} & \text{B} \\ \text{C} & \text{D}\end{array}\right|=1\)

Answer (Detailed Solution Below)

Option 4 : \(\left|\begin{array}{ll}\text{A} & \text{B} \\ \text{C} & \text{D}\end{array}\right|=1\)

ABCD Parameters Question 7 Detailed Solution

Download Solution PDF

Conditions for symmetry and reciprocity:

Parameter

Symmetry

Reciprocity

Z

Z11 = Z22

Z12 = Z21

Y

Y11 = Y22

Y12 = Y21

ABCD

A = D

 |AD - BC| = 1

h

h11h22 - h12h21 = 1

 h12 = -h21

What is transmission matrix of ideal transformer with turns ratio n : 1 (ie. V1 = nV2)

  1. \(\left[ {\begin{array}{*{20}{c}} n&0\\ 0&{\frac{1}{n}} \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} {\frac{1}{n}}&0\\ 0&n \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} n&0\\ 0&{ - \frac{1}{n}} \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} {\frac{1}{n}}&0\\ 0&{ - n} \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} n&0\\ 0&{\frac{1}{n}} \end{array}} \right]\)

ABCD Parameters Question 8 Detailed Solution

Download Solution PDF

The two-port networks of n : 1 ideal transformer is shown below.

GATE IN Electrical Circuits Subject test 2 images nita Q3

V1 = nV2

\({I_2} = - n{I_1} \Rightarrow {I_1} = \frac{{ - 1}}{n}{I_2}\)

ABCD parameters of a two-port network can be represented as follows.

V1 = A V2 – B I2

I1 = C V2 – D I2

The equations of ideal transformer are

V1 = n V2 – 0 I2

\({I_1} = 0{V_2} - \frac{1}{n}{I_2}\)

By comparing with standard equations,

A = n, B = 0, c = 0, \(D = \frac{1}{n}\)

\(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} n&0\\ 0&{\frac{1}{n}} \end{array}} \right]\)

The given matrix describes the transformer in terms of ABCD parameters.

For a 2-port symmetrical bilateral network, if transmission parameters A = 3 and B = 1 Ω. The value of parameter C is

  1. 3
  2. 8
  3. 18
  4. 9
  5. 10

Answer (Detailed Solution Below)

Option 2 : 8

ABCD Parameters Question 9 Detailed Solution

Download Solution PDF

Concept:

We know that the ABCD parameter of transmission line 

\(\rm \left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right] \)

For symmetrical network:

A = D

For reciprocity network:

AD – BC

Analysis:

For symmetrical network A = D = 3

For bilateral AD – BC = 1

9 – C = 1

C = 8

26 June 1

Conditions of reciprocity and symmetry in terms of different two-port parameters are:

Parameter

Conditions of reciprocity

Conditions of symmetry

Z

z12 = z21

z11 = z22

Y

y12 = y21

y11 = y22

T(ABCD)

(AD – BC) = 1

A = D

h

h12 = -h21

(h11h22 – h12h21)

= 1

The ABCD constants of this series impedance are\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\,\)Which of the following represents the B parameter?

  1. 1
  2. 8
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 2 : 8

ABCD Parameters Question 10 Detailed Solution

Download Solution PDF

Concept:

ABCD Parameter:

We know that the ABCD parameter of the transmission line

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\ \)

A = D

AD – BC = 1

\(\left[{\begin{array}{*{20}{c}} A&B\\ C&D \end{array}}\right]\)\(\left[\begin{array}{ll} 1 & 8 \\ 6 & 3 \end{array}\right]\)

So, B = 8

Conditions of reciprocity and symmetry in terms of different two-port parameters are:

Parameter

Conditions of reciprocity

 Conditions of symmetry

Z

z12 = z21

z11 = z22

Y

y12 = y21

y11 = y22

T(ABCD)

(AD – BC) = 1

A = D

h

h12 = -h21

(h11h22 – h12h21)

= 1

Direction: The following item consists of two statements, one labeled as ‘Statement (I) and the other as ‘Statement (II). You are to examine these two statements carefully and select the answers to these items using the code given below:

Statement (I): ABCD parameters are widely used in the analysis of power transmission engineering and termed as circuit parameters.

Statement (II): ABCD parameters are called as transmission parameters.

  1. Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
  2. Both Statement (I) and Statement (II) are individually true but Statement (II) is NOT the correct explanation of Statement (I)
  3. Statement (I) is true but Statement (II) is false
  4. Statement (I) is false but Statement (II) is true

Answer (Detailed Solution Below)

Option 2 : Both Statement (I) and Statement (II) are individually true but Statement (II) is NOT the correct explanation of Statement (I)

ABCD Parameters Question 11 Detailed Solution

Download Solution PDF

Concept:

F2 S.B Madhu 07.05.20 D16

There are four variables V1, V2, I1, and I2 in a two-port network as shown in the figure:

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_2}}\\ { - {I_2}} \end{array}} \right]\)

Where,

\(A= {\left. {\frac{{{V_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)

\(B=- {\left. {\frac{{{V_1}}}{{{I_2}}}} \right|_{{V_2} = 0}}\)

\(C= {\left. {\frac{{{I_1}}}{{{V_2}}}} \right|_{{I_2} = 0}}\)

\(D=\; - {\left. {\frac{{{I_1}}}{{{I_2}}}} \right|_{{V_2} = 0}}\)

  • T parameters are called as the transmission parameters or ABCD parameters (Reason is true).
  • The parameters, A and D do not have any units, since these are dimensionless.
  • The units of parameters, B and C are ohm and mho respectively.
  • These parameters are used for the analysis of an electrical network.
  •  It is also used for determining the performance of input voltage, output voltage, and current of the transmission network. (Assertion is true).
  • ABCD parameters are also known as transmission parameters because they provide a link between supply and receiving end voltages and currents considering the circuit elements to be linear. (Statement 2 is not the correct explanation to statement 1)

A two port network N has transmission parameters \(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\). The open circuit input impedance of the network at port 1, will be

SSC JE EE FT5 1

  1. D/C
  2. A/C
  3. AB/DC
  4. AD/BC

Answer (Detailed Solution Below)

Option 2 : A/C

ABCD Parameters Question 12 Detailed Solution

Download Solution PDF

Given that a two port network N has transmission parameters \(\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]\)

Then the equations will be

\({V_1} = A{V_2} + B{I_2}\)

\({I_1} = C{V_2} + D{I_2}\)

The input impedance of the network at port 1 is,

\(\frac{{{V_1}}}{{{I_1}}}\;at\;{I_2} = 0\)

\(\Rightarrow \frac{{{V_1}}}{{{I_1}}} = \frac{{A{V_2}}}{{C{V_2}}} = \frac{A}{C}\)

Consider a two-port network with the transmission matrix: \({\rm{T}} = \left( {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right).\) If the network is reciprocal, then

  1. \({{\rm{T}}^{ - 1}}{\rm{\;}} = {\rm{\;T}}\)
  2. \({{\rm{T}}^2}{\rm{\;}} = {\rm{\;T}}\)
  3. Determinant (T) = 0
  4. Determinant (T) = 1

Answer (Detailed Solution Below)

Option 4 : Determinant (T) = 1

ABCD Parameters Question 13 Detailed Solution

Download Solution PDF

Concept:

Two Port Parameters

Condition for Symmetry

Condition for Reciprocal

Z Parameters

Z11 = Z22

Z21 = Z12

Y parameters

Y11 = Y22

Y12 = Y21

ABCD parameters

A = D

AD - BC = 1

H parameters

\( {h_{11}}{h_{22}}-{h_{12}}{h_{21}} = 1\)

\({h_{12}} = -\;{h_{21}}\)

 

Application:

Given \({\rm{T}} = \left[ {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right]\)

The two-port network is symmetric if A = D and reciprocal if AD – BC = 1

∴ Determinant (T) = 1

The ABCD matric for a two-port network is defined by:

\(\left[ {\begin{array}{*{20}{c}} {{{\rm{V}}_1}}\\ {{{\rm{I}}_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\rm{A}}&{\rm{B}}\\ {\rm{C}}&{\rm{D}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\rm{V}}_2}}\\ { - {{\rm{I}}_2}} \end{array}} \right]\)

16 K

The parameter B for the given two-port network (in ohms, correct to two decimal places) is ________.

Answer (Detailed Solution Below) 4.3 - 5.3

ABCD Parameters Question 14 Detailed Solution

Download Solution PDF

Concept:

ABCD parameter equation is defined as:

V1 = AV2 – BI2

I1 = CV2 – DI2

Application:

\({\rm{B}} = {\left. {\frac{{{{\rm{V}}_1}}}{{ - {{\rm{I}}_2}}}} \right|_{{{\rm{V}}_2} = 0}}\)

F1 S.B Madhu 16.05.20 D2

From the above network, we can write:

\({{\rm{I}}_1} = \frac{{{{\rm{V}}_1}}}{{{{\rm{R}}_{{\rm{eq}}}}}} = \frac{{{{\rm{V}}_1}}}{{2 + 5||2}}\)

\(- {{\rm{I}}_2} = {{\rm{I}}_1} \times \frac{5}{7} \)

\(-I_2= \frac{{5{{\rm{V}}_1}}}{{24}}\)

\(-I_2= \frac{5}{7} \times \frac{{{{\rm{V}}_1}}}{{2 + \frac{{10}}{7}}} \)

\(\frac{{{{\rm{V}}_1}}}{{ - {{\rm{I}}_2}}} = \frac{{24}}{5} = 4.8 = {\rm{B}}\)

Two passive two-port networks are connected in cascade as shown in figure. A voltage source is connected at port 1.

GATE IN Signals and digital 30Q Sunny.docx 2

Given V1 = A1V2 + B1I2

I1 = C1V2 + D1I2

V2 = A2V3 + B2I3

I2 = C2V3 + D2I3

A1, B1, C1, D1, A2, B2, C2, and D2 are the generalized circuit constants. If the Thevenin equivalent circuit at port 3 consists of a voltage source VT and an impedance ZT connected in series, then

  1. \({V_T} = \frac{{{V_1}}}{{{A_1}{A_2}}},{Z_T} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2} + {B_1}{C_2}}}\)
  2. \({V_T} = \frac{{{V_1}}}{{{A_1}{A_2} + {B_1}{C_2}}},{Z_T} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2}}}\)
  3. \({V_T} = \frac{{{V_1}}}{{{A_1} + {A_2}}},{Z_T} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1} + {A_2}}}\)
  4. \({V_T} = \frac{{{V_1}}}{{{A_1}{A_2} + {B_1}{C_2}}},{Z_T} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2} + {B_1}{C_2}}}\)

Answer (Detailed Solution Below)

Option 4 : \({V_T} = \frac{{{V_1}}}{{{A_1}{A_2} + {B_1}{C_2}}},{Z_T} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2} + {B_1}{C_2}}}\)

ABCD Parameters Question 15 Detailed Solution

Download Solution PDF

Concept:

The equivalent transmission parameter for the cascade network is the product of the individual transmission parameter.

\({\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_{Total}} = {\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_1}{\left[ {\begin{array}{*{20}{c}} A&B\\ C&D \end{array}} \right]_2}\)

F1 U.B Deepak 22.01.2020-D4

Calculation:

We can write as follows.

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{A_1}}&{{B_1}}\\ {{C_1}}&{{D_1}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{A_2}}&{{B_2}}\\ {{C_2}}&{{D_2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_3}}\\ {{I_3}} \end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}} {{V_1}}\\ {{I_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\left( {{A_1}{A_2} + {B_1}{C_2}} \right)}&{\left( {{A_1}{B_2} + {B_1}{D_2}} \right)}\\ {\left( {{C_1}{A_2} + {D_1}{C_2}} \right)}&{\left( {{C_1}{B_2} + {D_1}{D_2}} \right)} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_3}}\\ {{I_3}} \end{array}} \right]\)

For Zth, V1 = 0

\(\Rightarrow {Z_{th}} = \frac{{{V_3}}}{{\left( { - {I_3}} \right)}}\)

V1 = (A1A2 + B1C2)V3 + (A1B2 + B1D2)I3 = 0

\({Z_{th}} = \frac{{{V_3}}}{{\left( { - {I_3}} \right)}} = \frac{{{A_1}{B_2} + {B_1}{D_2}}}{{{A_1}{A_2} + {B_1}{C_2}}}\)

For Vth, I3 = 0, V3 = Vth

V1 = (A1A2 + B1C2)Vth

\(\Rightarrow {V_{th}} = \frac{{{V_1}}}{{\left( {{A_1}{A_2} + {B_1}{C_2}} \right)}}\)
Get Free Access Now
Hot Links: teen patti real teen patti all teen patti game - 3patti poker master teen patti teen patti master downloadable content