Quantum Mechanics MCQ Quiz in বাংলা - Objective Question with Answer for Quantum Mechanics - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Apr 8, 2025

পাওয়া Quantum Mechanics उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Quantum Mechanics MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Quantum Mechanics MCQ Objective Questions

Top Quantum Mechanics MCQ Objective Questions

Quantum Mechanics Question 1:

The energy levels available to each electron in a system of N non-interacting electrons are En = nE0, n = 0,1,2, ... A magnetic field, which does not affect the energy spectrum, but completely polarizes the electron spins, is applied to the system. The change in the ground state energy of the system is

  1. \(\frac{1}{2} N^2 E_0\)
  2. N2E0
  3. \(\frac{1}{8} N^2 E_0\)
  4. \(\frac{1}{4} N^2 E_0\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{4} N^2 E_0\)

Quantum Mechanics Question 1 Detailed Solution

Explanation:

 \(E_n=nE_0\)(given)

Case-1-Initial ground state energy without polarization

F1 Teaching Arbaz 23-10-23 D13

According to Pauli Exclusion principle, only two electrons filled in one state.

  • Initial ground state energy \(E_i=2\times0+2\times E_0+2\times 2E_0+2\times3E_0+-------+2\times (\frac{N-2}{2})E_0\)
  • \(E_i=2E_0[1+2+3+-----------+\frac {N-2}{2}]\)
  • Now, \(\sum[1+2+3+-------N]=\frac{N(N+1)}{2}\)
  • \(\sum[1+2+3+-------\frac{N-2} {2}]=\frac {(\frac{N-2}{2}) (\frac {N} {2})} {2}\)
  • \(E_i=2E_0\times \)\(\frac {(\frac{N-2}{2}) (\frac {N} {2})} {2}\)\(=\frac{N^2E_0}{4}-\frac{NE_0} {2}\)

 

Case-2-Final ground state energy after polarization

F1 Teaching Arbaz 23-10-23 D14

After polarization, only one electron filled in the state.

  • \(E_f=1\times0+1\times E_0+1\times 2E_0+1\times3E_0+...+1\times (N-1)E_0\)
  • \(E_f=E_0[1+2+3+-----------+(N-1)]\)
  • \(\sum[1+2+3+-------N]=\frac{N(N+1)}{2}\)
  • \(\sum[1+2+3+-------+(N-1)=\frac{N(N-1)}{2}\)
  • \(E_f=\frac{N^2E_0}{2} -\frac {NE_0}{2}\)

 

The change in ground state energy is \(E_f-E_i=\frac{N^2 E_0} {2}-\frac {NE_0}{2}-\frac {N^2E_0} {4}+\frac {NE_0}{2}=\frac {N^2 E_0}{4}\)

So, the correct answer is \(\frac{1}{4} N^2 E_0\).

Quantum Mechanics Question 2:

At t = 0 , the wavefunction of an otherwise free particle confined between two infinite walls at x = 0 and x = L is ψ(x, t = 0) = \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}\right)\). Its wave function at a later time \(t=\frac{m L^2}{4 \pi h}\) is

  1. \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}\right) e^{i \pi / 6}\)
  2. \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}+\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 6}\)       
  3. \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}-\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 8}\)  
  4. \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}+\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 8}\)

Answer (Detailed Solution Below)

Option 4 : \(\sqrt{\frac{2}{L}}\left(\sin \frac{\pi x}{L}+\sin \frac{3 \pi x}{L}\right) e^{-i \pi / 8}\)

Quantum Mechanics Question 2 Detailed Solution

ψ(x, t = 0) = \(\left(\sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}-\sqrt{\frac{2}{L}} \sin \frac{3 \pi x}{L}\right)\)

\(\psi(x, t=0)=\left|\varphi_1\right\rangle-\left|\varphi_3\right\rangle\)

\(\psi(x, t)=\left|\varphi_1\right\rangle e^{\frac{-i E_t t}{\hbar}}\) - \(\left|\varphi_3\right\rangle e^{\frac{-i E_3 t}{\hbar}} \)

\(E_1=\frac{\pi^2 \hbar^2}{2 m L^2} E_3\) = \(\frac{9 \pi^2 \hbar^2}{2 m L^2} t=\frac{m L^2}{4 \pi \hbar}\)

\(\psi(x, t)=\left|\varphi_1\right\rangle e^{\frac{-i \pi}{8}}-\left|\varphi_3\right\rangle e^{\frac{-9 i \pi}{8}}\) = \(e^{\frac{-i \pi}{8}}\left(\left|\varphi_1\right\rangle-\left|\varphi_3\right\rangle e^{-i \pi}\right)\)

\(=e^{\frac{-i \pi}{8}}\left(\left|\varphi_1\right\rangle+\left|\varphi_3\right\rangle\right)=e^{\frac{-i \pi}{8}}\)\(\left(\sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}+\sqrt{\frac{2}{L}} \sin \frac{3 \pi x}{L}\right)\)

Quantum Mechanics Question 3:

A hydrogen atom is in the state \(\psi = \sqrt{\frac{8}{21}} \psi_{200} -\sqrt{\frac{3}{7}} \psi_{310} + \sqrt{\frac{4}{21}} \psi_{321} \), where n, l, m in \(\psi_{nlm} \) denote the principle orbit and magnetic quantum numbers, respectively. What is the expectation value of L2 in units of \(\frac{\hbar^2}{2} \) ?

  1. 2
  2. 4
  3. 8
  4. 1

Answer (Detailed Solution Below)

Option 2 : 4

Quantum Mechanics Question 3 Detailed Solution

Explanation:

We have \(\psi = \sqrt{\frac{8}{21}} \psi_{200} -\sqrt{\frac{3}{7}} \psi_{310} + \sqrt{\frac{4}{21}} \psi_{321} \)

Now <\(\psi| \psi \)> =1. Hence normalized.

Now we have to find the < L2> = \(\frac{8}{21} < \psi_{200}|L^2|\psi_{200}> +\frac{3}{7} < \psi_{310}|L^2|\psi_{310}>+ \frac{4}{21} < \psi_{321}|L^2|\psi_{321}> \) .

Now using the relation that \(L^2 \psi = l (l+1) \hbar^2 \psi \), we get:

\(=0+\frac{6}{7} \hbar^2 + \frac{8}{7} \hbar^2 = 2 \hbar^2 = 4\times\frac{\hbar^2}{2}\).

So the correct option is option 2).

Quantum Mechanics Question 4:

A two-dimensional square rigid box of side l contains 7 non-interacting electrons at T= 0K. The mass of the electron is m. The ground state energy of the system of electrons in units of \(\frac{\pi^2 \hbar^2}{2 m l^2} \) is?

  1. 32
  2. 24
  3. 14
  4. 7

Answer (Detailed Solution Below)

Option 1 : 32

Quantum Mechanics Question 4 Detailed Solution

Explanation:

WE are given a 2-dimensional box of length l.

There are electrons in it of mass m.

We have to find the ground state energy of 7 electrons.

So, we know that in 2-dimensional box energy eigen value is given by:

\(E_{n_x, n_y}= \frac{(n_x^2 + n_y^2) \pi^2 \hbar^2}{2 ml^2} \)

For the ground state energy of 7 electrons the arrangement can be:

\(E= 2 \times E_{1,1} + 2 \times E_{2,1} + 2\times E_{1,2} + 1 \times E_{2,2} \) .

hence the energy would be:

\(E= 2 \times \frac{2\pi^2 \hbar^2}{2 ml^2} + 2 \times \frac{5\pi^2 \hbar^2}{2 ml^2} + 2 \times \frac{5 \pi^2 \hbar^2}{2 ml^2} + 1 \times \frac{ 8\pi^2 \hbar^2}{2 ml^2} \).

Simplifying it a bit we get:

\(E= \frac{32 \pi^2 \hbar^2}{2 m l^2} \).

Hence the correct option is option1).

Quantum Mechanics Question 5:

Consider an elastic scattering of particles in l=0 states. If the corresponding phase shift is \(\delta_0 \) is 900and magnitude of the incident wave vector is equal to \(\sqrt{3 \pi} fm^{-1} \), then the total scattering cross section in units of fm-2 is? (Correct up to 2 decimal places)

  1. 1.32
  2. 1.34
  3. 1.33
  4. 1.35

Answer (Detailed Solution Below)

Option 3 : 1.33

Quantum Mechanics Question 5 Detailed Solution

Explanation:

 We have been given with \(\delta_0 = 90^0 = \frac{\pi}{2} \)and wavevector is \(\sqrt{3 \pi} fm^{-1} \)

The total scattering cross-section for particle at l=0 states is given as :

\(\sigma = \frac{4 \pi }{k^2} \sin^2 \delta_0 \). Putting all the values given in the above expression we get:

\(\sigma = = \frac{4\pi}{3 \pi} fm^2 =1.33 fm^2 \).

The correct option is option 3).

Quantum Mechanics Question 6:

 \(\sigma_x , \sigma_y \) and \(\sigma_z \) are the Pauli matrices. The expression \(3 \sigma_x \sigma_y + 5 \sigma_y \sigma_x \) is equal to?

  1. \(-i\sigma_z \)
  2. \(-2i \sigma_z \)
  3. \(2i \sigma_z \)
  4. \(i\sigma_z \)

Answer (Detailed Solution Below)

Option 2 : \(-2i \sigma_z \)

Quantum Mechanics Question 6 Detailed Solution

Explanation:

 The commutation and anti-commutation relations of Pauli matrices are given as:

\([\sigma_i , \sigma_j] = 2 i \epsilon_{ijk} \sigma_k , [\sigma_i, \sigma_j]_a = 2 I \delta_{ij} \) , where a subscript is for anti-commutation.

So, using the above relation we get:

\(\sigma_i \sigma_j = \delta_{ij} I + i \epsilon_{ijk} \sigma_k \) .

So, using the above relation we can write:

\(\sigma_x \sigma_y = i \sigma_z , \sigma_{y} \sigma_x = - i \sigma_z \) .

Putting these in the final expression we get:

\(3 \sigma_x \sigma_y + 5 \sigma_y \sigma_x = 3 i \sigma_z -5 i \sigma_z = - 2 i \sigma_z \) .

The correct option is option 2).

Quantum Mechanics Question 7:

If \(\vec{S}_1 \) and \(\vec{S}_2 \) are the spin operators of the two electrons of a He atom, the value of \(<\vec{S}_1 \cdot \vec{S}_2 > \) for the ground state is ?

  1. \(\frac{\hbar^2}{4} \)
  2. \(-\frac{3}{2} \hbar^2 \)
  3. \(-\frac{3}{4} \hbar^2 \)
  4. 0

Answer (Detailed Solution Below)

Option 3 : \(-\frac{3}{4} \hbar^2 \)

Quantum Mechanics Question 7 Detailed Solution

Explanation:

We have two electrons hence the total spin will be: \(\vec{S} = \vec{S}_1 + \vec{S}_2 \) .

Now,  \(\vec{S}\cdot \vec{S}= (\vec{S}_1 + \vec{S}_2 ) \cdot (\vec{S}_1 + \vec{S}_2) \) .

Therefore \(S^2= S_1^2 + S_2^2 + 2 \vec{S}_1 \cdot \vec{S}_2 \).

Taking the expectation values on both the sides we get:

\( < \vec{S}_1 \cdot \vec{S}_2> = \frac{1}{2} ( -< S_1^2> -< S_2^2> ) \).

We know that \( = s_1(s_1 + 1) \hbar^2 , = s_2(s_2 + 1) \hbar^2, = s(s + 1) \hbar^2 \).

Also, we know that \(s_1 = s_2 = \frac{1}{2} \), as it is for electrons so for ground state the total spin will be s=0.

Hence putting all these in the above expression for expectation value we get:

\( < \vec{S}_1 \cdot \vec{S}_2> = \frac{\hbar^2}{2} (0 - \frac{2}{2} (\frac{1}{2} +1) ) = - \frac{3 \hbar^2}{4} \).

The correct option is option 3).

Quantum Mechanics Question 8:

A two-state quantum system has energy eigenvalues is \(\pm \epsilon \) corresponding to the normalized states \(|\psi_{\pm} > \). At time t=0, the system is in quantum state \(\frac{1}{\sqrt{2}} (|\psi_{+}> + |\psi_{-}> ) \). The probability that the system will be in the same state at \(t= h/ 6\epsilon \) is

  1. 0.2
  2. 0.25
  3. 0.3
  4. 0.5

Answer (Detailed Solution Below)

Option 2 : 0.25

Quantum Mechanics Question 8 Detailed Solution

Explanation:

At t=0 we have \(|\phi> = \frac{1}{\sqrt{2}} (|\psi_{+}> + |\psi_{-}> ) \)

Now at some other time we will have the state evolved as \(|\phi_1> = \frac{1}{\sqrt{2}} (|\psi_{+}> e^{-\frac{i\epsilon t}{\hbar}}+ |\psi_{-}> e^{\frac{i\epsilon t}{\hbar}}) \).

If \(t= h/ 6\epsilon \) we have \(|\phi_1> = \frac{1}{\sqrt{2}} (|\psi_{+}> e^{-\frac{i\pi}{3}}+ |\psi_{-}>e^{\frac{i\pi}{3}}) \).

Now in order to find the probability that this state will appear after the above stated time is;

\(|<\phi_1| \phi> |^2 =| \frac{e^{-i\pi/3} + e^{i\pi /3}}{2} |^2 = |\cos(\frac{\pi}{3})|^2 =\frac{1}{4} = 0.25 \).

We have used the property here that \(<\psi_{+}| \psi_{-}> =0 , <\psi_{-}| \psi_{+}> =0 , <\psi_{+}| \psi_{+}>=<\psi_{-}| \psi_{-}> =1 \).

The correct option is option 2).

Quantum Mechanics Question 9:

Consider potential \(U (r)= - U_0 \frac{e^{-\alpha r}}{r} \). Both \(\alpha \) and \(U_0 \) are constants. According to first Born approximation, the elastic scattering amplitude calculated with \(U(r) \) for momentum transfer q and \(\alpha \rightarrow 0 \) is proportional to?

  1. \(q \)
  2. \(q^{-2} \)
  3. \(q^{-1} \)
  4. \(q^{2} \)

Answer (Detailed Solution Below)

Option 2 : \(q^{-2} \)

Quantum Mechanics Question 9 Detailed Solution

Explanation:

For \(\alpha \rightarrow 0 \) , we have columbic potential.

For this type of potential, we have \(\sigma (\theta) \propto cosec^{4} \frac{\theta}{4} \) ,

which implies that \(f(\theta) \propto cosec^{4} \frac{\theta}{4} \) . .

Also, momentum transfer is given as \( q= 2 k \sin \frac{\theta}{2} \).

 Hence, \(f (\theta) \propto \frac{1}{q^2} \).

The correct option is option 2).

Quantum Mechanics Question 10:

Let \(\hat x\) and \({\rm{\hat p}}\) denote position and momentum operators obeying the commutation relation \(\left[ {{\rm{\hat x,}}\,{\rm{\hat p}}} \right]\) = ih. If |x denotes an eigenstate of \({{\rm{\hat x}}}\) corresponding to the eigenvalue x, then \({{\rm{e}}^{{\rm{ia\hat p/h}}}}\left| x \right\rangle \) is

  1. an eigenstate of \(\hat x\) corresponding to the eigenvalue x
  2. an eigenstate of \(\hat x\) corresponding to the eigenvalue (x + a)
  3. an eigenstate of \(\hat x\) corresponding to the eigenvalue (x − a)
  4. not an eigenstate of \(\hat x\)

Answer (Detailed Solution Below)

Option 3 : an eigenstate of \(\hat x\) corresponding to the eigenvalue (x − a)

Quantum Mechanics Question 10 Detailed Solution

Concept:

The momentum operator is given by

p = - ih \({\partial \over \partial x}\)

where h is the Plank constant.

Calculation:

e\({iaP\over h}\) |x>

= [\(\sum^{\infty}_{n=0} {1 \over n!}({iaP\over h})^n\) ]|x>

\([\sum^{\infty}_{n=0} {1 \over n!}({iaP\over h})^n]^h \)|x>

= |x> - a∇|x> + \({1 \over 2!}\) (a∇)2|x> ... = |x-a>

X|x-a> = (x-a)|x-a>

The correct answer is an option (3).

Get Free Access Now
Hot Links: online teen patti real money teen patti go teen patti master 2023 teen patti bliss