Fourier Series MCQ Quiz in বাংলা - Objective Question with Answer for Fourier Series - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 9, 2025

পাওয়া Fourier Series उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Fourier Series MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Fourier Series MCQ Objective Questions

Top Fourier Series MCQ Objective Questions

Fourier Series Question 1:

Consider a rectified sine wave x(t) defined by x(t) = |A sin πt|. Determine its fundamental period and complex exponential Fourier series

  1. \({T_0} = 1\;and\;x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} - 1}}{e^{jk2\pi t}}\)
  2. \({T_0} = \frac{1}{2}\;and\;x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} + 1}}{e^{jk2\pi t}}\)
  3. \({T_0} = 1\;and\;x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} + 1}}{e^{jk2\pi t}}\)
  4. \({T_0} = \frac{1}{2}\;and\;x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} - 1}}{e^{jk2\pi t}}\)

Answer (Detailed Solution Below)

Option 1 : \({T_0} = 1\;and\;x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} - 1}}{e^{jk2\pi t}}\)

Fourier Series Question 1 Detailed Solution

Concept:

The complex Exponential Fourier Series representation of a periodic signal x(t) with fundamental period To is given by,

\(x\left( t \right) = \mathop \sum \limits_{ - \infty }^{ + \infty } {C_k}{e^{jk{\omega _0}t}}\;\)

Where \(\;{\omega _0} = \frac{{2\pi }}{{{T_0}}}\) = fundamental frequency

Now, putting the value of k and expanding above series we get-

\(x\left( t \right) = \ldots + {C_{ - 2}}{e^{ - j2{\omega _0}t}} + {C_{ - 1}}{e^{ - j{\omega _0}t}} + {C_0} + {C_1}{e^{2{\omega _0}t}} + {C_2}{e^{j2{\omega _0}t}} + \ldots \)

Calculation:

F1 U.B 20.6.20 Pallavi D17

Consider the signal, x(t) = A|sin(ω1t)|

The period of the sinusoid is \({T_1} = \frac{{2\pi }}{{{\omega _1}}}\)

The period of the rectified sinusoid is one-half of this, \(T = \frac{{{T_1}}}{2} = \frac{\pi }{{{\omega _1}}}\)

Therefore, \({\omega _1} = \frac{{2\pi }}{{{T_1}}} = \frac{\pi }{T} = \frac{{{\omega _0}}}{2}\)

Thus, we can write \(x\left( t \right) = A\left| {\sin \left( {\frac{{{\omega _0}t}}{2}} \right)} \right|\)

The Fourier series coefficients are:

\({c_k} = \frac{1}{T}\mathop \smallint \limits_0^T x\left( t \right){e^{ - jk{\omega _0}t}}dt\)

\( = \frac{1}{T}\mathop \smallint \limits_0^T A\left| {\sin \left( {\frac{{{\omega _0}t}}{2}} \right)} \right|{e^{ - jk{\omega _0}t}}dt\)

From 0 to T, \(\left| {\sin \left( {\frac{{{\omega _0}t}}{2}} \right)} \right| = \sin \left( {\frac{{{\omega _0}t}}{2}} \right)\). Also, replace ω0 by \(\frac{{2\pi }}{T}\)

\({c_k} = \frac{1}{T}\mathop \smallint \limits_0^T A\sin \left( {\frac{{\pi t}}{T}} \right){e^{ - \frac{{j2\pi kt}}{T}}}dt\)

\( = \frac{A}{T}\mathop \smallint \limits_0^T \left( {\frac{{{e^{\frac{{j\pi t}}{T}}} - {e^{ - \frac{{j\pi t}}{T}}}}}{{j2}}} \right){e^{ - \frac{{j2\pi kt}}{T}}}dt\)

\( = \frac{A}{{j2T}}\mathop \smallint \limits_0^T \left( {{e^{\frac{{j\pi t\left( {1 - 2k} \right)}}{T}}} - {e^{ - \frac{{j\pi t\left( {1 + 2k} \right)}}{T}}}} \right)dt\)

\( = \frac{A}{{j2T}}\left[ {\frac{{{e^{\frac{{j\pi t\left( {1 - 2k} \right)}}{T}}}}}{{j\pi \left( {1 - 2k} \right)/T}} - \frac{{{e^{ - \frac{{j\pi t\left( {1 + 2k} \right)}}{T}}}}}{{j\pi \left( {1 + 2k} \right)/T}}} \right]_0^T\)

\( = - \frac{A}{{2T}}\left[ {\frac{{{e^{j\pi \left( {1 - 2k} \right)}}}}{{\pi \left( {1 - 2k} \right)/T}} + \frac{{{e^{ - j\pi \left( {1 + 2k} \right)}}}}{{\pi \left( {1 + 2k} \right)/T}} - \frac{1}{{\pi \left( {1 - 2k} \right)/T}} - \frac{1}{{\pi \left( {1 + 2k} \right)/T}}} \right]\)

But \({e^{j\pi \left( {1 - 2k} \right)}} = {e^{j\pi }}{e^{ - j2\pi k}} = - 1\) and \({e^{ - j\pi \left( {1 + 2k} \right)}} = - 1\)

\({c_k} = - \frac{A}{{2T}}\left[ {\frac{{ - 1}}{{\pi \left( {1 - 2k} \right)/T}} + \frac{{ - 1}}{{\pi \left( {1 + 2k} \right)/T}} - \frac{1}{{\pi \left( {1 - 2k} \right)/T}} - \frac{1}{{\pi \left( {1 + 2k} \right)/T}}} \right]\)

\( = - \frac{A}{2}\left[ { - \frac{2}{{\pi \left( {1 - 2k} \right)}} - \frac{2}{{\pi \left( {1 + 2k} \right)}}} \right]\)

\( = \frac{A}{\pi }\left[ {\frac{1}{{1 - 2k}} + \frac{1}{{1 + 2k}}} \right]\)

\( = \frac{{2A}}{\pi }\left( {\frac{1}{{1 - 4{k^2}}}} \right)\)
The given function is x(t) = |A sin πt|

\({T_1} = \frac{{2\pi }}{\pi } = 2\)

\({T_0} = \frac{{{T_1}}}{2} = \frac{2}{2} = 1\)

Exponential Fourier series, \(x\left( t \right) = \mathop \sum \limits_{ - \infty }^{ + \infty } {C_k}{e^{jk{\omega _0}t}}\)

\( \Rightarrow x\left( t \right) = - \frac{{2A}}{\pi }\mathop \sum \limits_{k = - \infty }^\infty \frac{1}{{4{k^2} - 1}}{e^{jk2\pi t}}\)

Fourier Series Question 2:

The magnitude and phase spectra corresponding to a signal x(t) is shown. If the fundamental frequency ω0 = π then the signal x(t) is.

F1 R.D Deepak 08.10.2019 D 8

F1 R.D Deepak 08.10.2019 D 9

  1. \(4\cos \left( \frac{\pi }{6} \right)+2\cos \left( \frac{\pi }{3} \right)\)
  2. \(4\cos \left( 2\pi t+\frac{\pi }{6} \right)+2\cos \left( \pi t-\frac{\pi }{3} \right)\)
  3. \(4\cos \left( 2\pi t+\frac{\pi }{6} \right)+4\cos \left( \pi t-\frac{\pi }{3} \right)\)
  4. \(2\cos \left( 2\pi t+\frac{\pi }{3} \right)+4\cos \left( \pi t+\frac{\pi }{6} \right)\)

Answer (Detailed Solution Below)

Option 2 : \(4\cos \left( 2\pi t+\frac{\pi }{6} \right)+2\cos \left( \pi t-\frac{\pi }{3} \right)\)

Fourier Series Question 2 Detailed Solution

Concept:

The signal x(t) can be found using:

\(x\left( t \right)=\underset{=-\infty }{\overset{+\infty }{\mathop \sum }}\,{{c}_{n}}{{e}^{jn{{\omega }_{o}}t}}\)

Application

\({{C}_{n}}=\left| {{C}_{n}} \right|{{e}^{j\angle n}}\)

\({{C}_{-2}}=2{{e}^{j\left( -\frac{\pi }{6} \right)}}=2{{e}^{-j\frac{\pi }{6}}}\)

\({{C}_{-1}}=1{{e}^{j\left( \frac{\pi }{3} \right)}}={{e}^{j\frac{\pi }{3}}}\)

\({{C}_{1}}=1{{e}^{-j\left( \frac{\pi }{3} \right)}}={{e}^{-j\frac{\pi }{3}}}\)

\({{C}_{2}}=2{{e}^{+j\left( \frac{\pi }{6} \right)}}=2{{e}^{j\frac{\pi }{6}}}\)

\(x\left( t \right)={{C}_{-2}}{{e}^{-j2\pi t}}+{{C}_{-1}}{{e}^{-j\pi t}}+{{C}_{1}}{{e}^{j\pi t}}+{{C}_{2}}{{e}^{j2\pi t}}\)

\(x\left( t \right)=~2{{e}^{-j\left( 2\pi t+\frac{\pi }{6} \right)}}+{{e}^{-j\left( \pi t-\frac{\pi }{3} \right)}}+{{e}^{+j\left( \pi t-\frac{\pi }{3} \right)}}+2{{e}^{j\left( \frac{\pi }{6}+2\pi t \right)}}~\)

\(2\pi t+\frac{\pi }{6}=\theta \)

\(\left( \pi t-\frac{\pi }{3} \right)=ϕ\)

\(x\left( t \right)=2\left( {{e}^{-j\theta }}+{{e}^{j\theta }} \right)+1\left( {{e}^{-jϕ }}+{{e}^{jϕ }} \right)\)

x (t) = 4 cosθ + 2 cos ϕ 

\(x\left( t \right)=4\cos \left( 2\pi t+\frac{\pi }{6} \right)+2\cos \left( \pi t\frac{-\pi }{3} \right)~\)

Fourier Series Question 3:

The Fourier series applies to _________ signals.

  1. discrete and aperiodic
  2. continuous and aperiodic
  3. continuous and periodic
  4. discrete and periodic

Answer (Detailed Solution Below)

Option 3 : continuous and periodic

Fourier Series Question 3 Detailed Solution

Fourier Series:

A Fourier series is an expansion of a continuous and periodic function f(x) in terms of an infinite sum of sines and cosines.

Fourier Series is used for the orthogonality relationships of the sine and cosine functions.

For functions that are not periodic, the Fourier series is replaced by the Fourier transform.

For periodic signals, this representation becomes the discrete-time Fourier series, and for aperiodic signals, it becomes the discrete-time Fourier transform.

Continuous Fourier Transform:

The Fourier transform pair in the most general form for a continuous and aperiodic time signal x(t).

Discrete-time Fourier series:

The Fourier transform pair in the most general form for a discrete and periodic time signal x(t).

Fourier Series Question 4:

The Fourier transform of \(x\left( t \right) = {e^{ - 3t}}u\left( {t - 2} \right)\) is:

\(X\left( \omega \right) = \frac{{{e^{ - A\left( {B + j\omega } \right)}}}}{{3 + j\omega }}\)

What is the value of A + B ______.

  1. 4
  2. 5
  3. 6
  4. 7

Answer (Detailed Solution Below)

Option 2 : 5

Fourier Series Question 4 Detailed Solution

Concept:

The Fourier transform of a signal in time domain is given as:

\(X\left( \omega \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - j\omega t}}\)

For f(t) = e-t u(t)

\( F\left( \omega \right) = \frac{1}{{1 + j\omega }}\)

Calculation:

\({e^{ - 3t}}u\left( t \right) \leftrightarrow \frac{1}{{3 + j\omega }}\)

\({e^{ - 3\left( {t - 2} \right)}}u\left( {t - 2} \right) \leftrightarrow \frac{{{e^{ - 2j\omega }}}}{{3 + j\omega }}\)

\({e^{ - 3t}}u\left( {t - 2} \right) \leftrightarrow \frac{{{e^{ - 6}} \cdot {e^{ - 2j\omega }}}}{{3 + j\omega }} = \frac{{{e^{ - 2\left( {3 + j\omega } \right)}}}}{{3 + j\omega }}\)

A = 2, B = 3

A + B = 5

Fourier Series Question 5:

The discrete-time Fourier series representation of a signal x[n] with period N is written as \(\rm x[n] = \sum_{k = 0}^{N - 1} a_k e^{j(2kn\pi/N)}\). A discrete-time periodic signal with period N = 3, has the non-zero Fourier series coefficients: a-3 = 2 and a4 = 1. The signal is 

  1. \(\rm 2 + 2e^{- \left( j \frac{2\pi}{6} n \right) }\cos \left( \frac{2 \pi}{6} n\right) \)
  2. \(\rm 1 + 2e^{ \left( j \frac{2\pi}{6} n \right) }\cos \left( \frac{2 \pi}{6} n\right) \)
  3. \(\rm 1 + 2e^{ \left( j \frac{2\pi}{3} n \right) }\cos \left( \frac{2 \pi}{6} n\right) \)
  4. \(\rm 2 + 2e^{ \left( j \frac{2\pi}{6} n \right) }\cos \left( \frac{2 \pi}{6} n\right) \)

Answer (Detailed Solution Below)

Option 2 : \(\rm 1 + 2e^{ \left( j \frac{2\pi}{6} n \right) }\cos \left( \frac{2 \pi}{6} n\right) \)

Fourier Series Question 5 Detailed Solution

Concept:

Discrete-time Fourier series is given by:

\(\rm x[n] = \sum_{k = 0}^{N - 1} a_k e^{j(2kn\pi/N)}\)

where N = time period
In discrete-time Fourier series, coefficients are periodic with the same time period of input signal x[n].

Therefore, ak = ak+N

m = any positive integer

Calculation:

Given, N = 3 
a-3 = 2 and a4 = 1
ak = ak+N
a-3 = a-3+3
a-3 = a0 = 2
a1 = a1+3
a1 = a4 = 1

Expanding Fourier series by putting values of k = 0 and 1

\(\rm x[n] = a_0 e^{j(2(0)n\pi/3)} + a_1 e^{j(2(1)n\pi/3)}\)

\(\rm x[n] = a_0 e^{j0} + a_1 e^{j(2n\pi/3)} \)

\(\rm x[n] = 2 + 1 e^{j(2n\pi/3)} \)

\(\rm x[n] = 1 +1 + 1 e^{j(2n\pi/3)} \)

\(\rm x[n] = 1 + e^{j(2n\pi/6)} e^{j(-2n\pi/6)} + 1 e^{j(2n\pi/3)} \)

\(\rm x[n] = 1 + e^{j(2n\pi/6)} \times (e^{j(2n\pi/6)}+e^{-j(2n\pi/6)})\)

\(\rm x[n] = 1 + e^{j(2n\pi/6)} \times 2{e^{j(2n\pi/6)}+e^{-j(2n\pi/6)}\over2}\)

∵ \(e^{j(2n\pi/6)}+e^{-j(2n\pi/6)}\over2\) = \(cos \left( \frac{2 \pi}{6} n\right)\)

\(\rm x[n] =\rm 1 + 2e^{ \left( j \frac{2\pi}{6} n \right) }\cos \left( \frac{2 \pi}{6} n\right)\)

Fourier Series Question 6:

Parseval’s relation for a periodic signal relates

  1. Total average power in the signal
  2. Total harmonic distortion
  3. Sum of Fourier coefficients
  4. Average of the Fourier coefficients
  5. Total RMS value of the signal

Answer (Detailed Solution Below)

Option 1 : Total average power in the signal

Fourier Series Question 6 Detailed Solution

Parseval's Theorem:

For continuous-time, periodic signal, the energy is given by:

\(\frac{1}{T}\int\limits_T {{{\left| {x(t)} \right|}^2}dt = {{\sum\limits_{k = - \infty }^{ + \infty } {\left| {{a_k}} \right|} }^2}} \)

Where ak is the Fourier series coefficient of x(t), and T is the period of the signal.

For average power in one period of the periodic signal x(t), we write:

\(\frac{1}{T}\int\limits_T {{{\left| {{a_k}{e^{jk{\omega _o}t}}} \right|}^2}dt = \frac{1}{T}{{\int\limits_T {\left| {{a_k}} \right|} }^2}} dt = {\left| {{a_k}} \right|^2}\)

\({\left| {{a_k}} \right|^2}\) is the average power in the kth harmonic of x(t).

∴ Parseval's relation states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components.

Fourier Series Question 7:

Consider the signal shown below.

F1 Uday Madhu 08.10.20 D4

Which of the following represents the Fourier series for the above signal.

  1. \(\frac{{4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{4}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{4}}}\)
  2. \(\frac{{ - 4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{6}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{3}}}\)
  3. \(\frac{{ - 4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{4}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{4}}}\)
  4. \(\frac{{4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{6}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{3}}}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{{ - 4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{6}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{3}}}\)

Fourier Series Question 7 Detailed Solution

T = 6, \({\omega _0} = \frac{{2\pi }}{6},\; = \frac{\pi }{3}\)

\({\rm{x}}\left( {\rm{t}} \right){\rm{\;}} = \mathop \sum \limits_{n = \; - \infty }^e {C_n}{e^{jn{\omega _0}t}}\)

\({C_n} = \frac{1}{6}\mathop \smallint \nolimits_{ - 1}^5 x\left( t \right){e^{ - jn{\omega _0}t}}dt\)

\(= \frac{1}{6}\mathop \smallint \nolimits_{ - 1}^0 - 2\;{e^{ - jn{\omega _0}t\;\;}}dt + \frac{1}{6}\mathop \smallint \nolimits_2^3 2\;{e^{ - jn{\omega _0}t}}dt\)

\( = \frac{{ - 1}}{3}\;\left[ {\frac{{ - 1}}{{jn{\omega _0}\;}}{e^{ - jn{\omega _0}}}t} \right]_{ - 1}^0 + \frac{1}{3}\left[ {\frac{{ - 1}}{{jn{\omega _0}}}\;{e^{ - jn{\omega _0}t}}} \right]_2^3\)

\(= \frac{1}{{jn\pi }}\left( {1 - {e^{jn\frac{\pi }{3}}}} \right) - \frac{1}{{jn\pi }}\left( {{e^{ - jn\pi \;}} - {e^{ - jn\frac{{2\pi }}{3}}}} \right)\)

\(= \frac{1}{{jn\pi }}[\;{e^{\frac{{jn\pi }}{6}}}\left( {{e^{ - jn\frac{\pi }{6}}} - {e^{jn\frac{\pi }{6}}}} \right) - {e^{ - jn\frac{{5\pi }}{6}\;}}\left( {{e^{ - jn\frac{\pi }{6}}} - {e^{ - jn\frac{\pi }{6})}}} \right]\)

\(= \frac{2}{{n\pi }}\left[ { - {e^{jn\frac{\pi }{6}}}\sin \left( {\frac{{n\pi }}{6}} \right) + {e^{ - jn5\frac{\pi }{6}}}\sin \left( {n\frac{\pi }{6}} \right)} \right]\)

\(= \frac{2}{{n\pi }}\sin \left( {\frac{{n\pi }}{6}} \right)\left[ {{e^{ - jn\frac{{3\pi }}{6}}} + {e^{ - j\;3n\frac{\pi }{6}}}} \right]{e^{ - j\frac{{2\pi }}{6}n}}\)

\(= \frac{{ - 4j}}{{n\pi }}\sin \left( {\frac{{n\pi }}{6}} \right)\sin \left( {\frac{{n\pi }}{2}} \right){e^{ - jn\frac{\pi }{3}}}\)

Fourier Series Question 8:

Match list I (Fourier series and Fourier transform) with list II (their properties) and select the answer using codes given below:

 List I

 List II

 A. Fourier series

 1. Discrete and periodic

 B. Continuous Fourier transform 

 2. Continuous and Periodic

 C. Discrete time Fourier series

 3. Continuous and Aperiodic

  1. A – 2, B – 3, C - 1
  2. A – 3, B – 2, C - 1
  3. A – 1, B – 3, C - 2
  4. A – 2, B – 1, C - 3

Answer (Detailed Solution Below)

Option 1 : A – 2, B – 3, C - 1

Fourier Series Question 8 Detailed Solution

  • Fourier Series:

  • A Fourier series is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions.
  • For functions that are not periodic, the Fourier series is replaced by the Fourier transform.
  • For periodic signals this representation becomes the discrete-time Fourier series, and for aperiodic signals it becomes the discrete-time Fourier transform.
     
  • Continuous Fourier Transform:

    The Fourier transform pair in the most general form for a continuous and aperiodic time signal x(t).

    Discrete-time Fourier series:

    The Fourier transform pair in the most general form for a discrete and periodic time signal x(t).

Fourier Series Question 9:

The Fourier series representation of a periodic function with half-wave symmetry contains only _____

  1. odd harmonics
  2. cosine terms
  3. sine terms
  4. even harmonics

Answer (Detailed Solution Below)

Option 1 : odd harmonics

Fourier Series Question 9 Detailed Solution

Effect of symmetry on Fourier series coefficients:

Symmetry

condition

DC term (a0)

Coefficient of cosine terms (an)

Coefficient of sine terms (bn)

Even

x(t) = x(-t)

?

?

0

Odd

x(-t) = - x(t)

0

0

?

Half-wave (or) Rotational

x(t) = - x (t ± T/2)

0

= 0 ; n even

= ? ; n odd

= 0 ; n even

=? ; n odd

Half-wave even harmonic

x(t) = x(t-T) = x(t -T/2)

0

= 0 ; n odd

= ? ; n even

= 0 ; n odd

= 0 ; n even

 

 

A periodic function with half-wave symmetry contains only odd harmonics.

Fourier Series Question 10:

The convolution between the two sequences x1 (n) = [1, 2, 3] and x2 (n) = [3, 2, 1] is _______.

  1. y(n) = [1, 2, 3, 2, 1]
  2. y(n) = [3, 12, 36, 12, 3]
  3. y(n) = [ 3, 8, 14, 8, 3]
  4. y(n) = [ 4, 4, 4]

Answer (Detailed Solution Below)

Option 3 : y(n) = [ 3, 8, 14, 8, 3]

Fourier Series Question 10 Detailed Solution

Concept:

Convolution is a mathematical operation on two functions that produces a third function that expresses how the shape of one is modified by the other.

The term convolution refers to both the result function. It is a mathematical way of combining two signals to form a third signal.

It is the single most important technique in Digital Signal Processing. Tabular Method is one of the methods to solve it.

x1 (n)  =  [a1, a2, a3

x2 (n)  =  [b1, b2, b3]

x1 (n) x2 (n) a1 a2
b1 a1 × b1 a2 × b1
b2 a1 × b2 a2 × b2

 

Calculation:

x1 (n)  =  [1, 2, 3] 

x2 (n)  =  [3, 2, 1] 

Solving by the help of Tabular Method

y(n) = x1 (n) ∗ x2 (n)

y(n) 1 2 3
3 3 6 9
2 2 4 6
1 1 2 3
 

y(n) = x1 (n) ∗ x2 (n) =  [3 , 2 + 6 , 1 + 4 + 9 , 2 + 6 , 3] =  [3,8,14,8,3]

Important Points

Length Property:

The length of the y(n) signal can be calculated as:

Length of x1 (n)  +  Length of x2 (n)  -  1

3 + 3 - 1 = 5

Get Free Access Now
Hot Links: teen patti 100 bonus teen patti game teen patti refer earn teen patti win teen patti gold new version 2024