Evaluate using Special Integral Forms MCQ Quiz in বাংলা - Objective Question with Answer for Evaluate using Special Integral Forms - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Apr 5, 2025
Latest Evaluate using Special Integral Forms MCQ Objective Questions
Top Evaluate using Special Integral Forms MCQ Objective Questions
Evaluate using Special Integral Forms Question 1:
Let \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\) m, n > 0 If \(\rm \int_0^1(1-x^{10})^{20}dx=a\times \beta (b,c)\) then 100 (a + b + c) equals ______.
Answer (Detailed Solution Below)
Evaluate using Special Integral Forms Question 1 Detailed Solution
Calculation:
Given, \(\rm \beta(m,n)=\int_0^1x^{m-1}(1-x)^{n-1}dx\)
Let I = \(\int_0^1 1 \cdot\left(1-x^{10}\right)^{20} d x\)
Put x10 = t ⇒ x = t1/10
⇒ \(\mathrm{dx}=\frac{1}{10}(\mathrm{t})^{-9 / 10} \mathrm{dt}\)
∴ I = \(\int_0^1(1-t)^{20} \frac{1}{10}(t)^{-9 / 10} d t\)
⇒ I = \(\frac{1}{10} \int_0^1 t^{-9 / 10}(1-t)^{20} d t\)
= \(\frac{1}{10} \int_0^1 x^{-9 / 10}(1-x)^{20} d x\)
= \(\rm \frac{1}{10}\times \beta (\frac{1}{10},21)\) = \(\rm a\times \beta (b,c)\)
⇒ a = \(\frac{1}{10}\) b = \(\frac{1}{10}\) c = 21
⇒ 100(a + b + c) = 100(\(\frac{1}{10}\) + \(\frac{1}{10}\) + 21) = 10 + 10 + 2100 = 2120
∴ The value of 100(a + b + c) is 2120.
The correct answer is Option 4.
Evaluate using Special Integral Forms Question 2:
What is the value of \(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Answer (Detailed Solution Below)
Evaluate using Special Integral Forms Question 2 Detailed Solution
Concept
\(\rm \int e^x \left(f(x)+f'(x)\right)dx \) = ex f(x) + c
Calculation:
Let, \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)
Let f(x) = \(\rm 1\over x\)
⇒ \(\rm f'(x) = - {1\over x^2}\)
∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)= \(\rm \int e^x \left(f(x)+f'(x)\right)dx \)
= ex f(x) + c
= \(\rm e^x ({1\over x})\) + c
Hence, option (3) is correct.