The parametric coordinate of any point of the parabola y2 = 4ax is

This question was previously asked in
Agniveer Navy SSR: 25th May 2025 Shift 2 Memory-Based Paper
View all Navy SSR Agniveer Papers >
  1. (at², 2at)
  2. (-at², 2at) 
  3. (a sin2 t, -2a sin t)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : (at², 2at)
Free
Agniveer Navy SSR Full Test - 01
4.1 K Users
100 Questions 100 Marks 60 Mins

Detailed Solution

Download Solution PDF

Calculation:

Parabola

Parametric
equation

y2 = 4ax (at2, 2at)
y2 = -4ax (-at2, 2at)
x2 = +4ay (2at, at2)
x2 = -4ay (2at, -at2)
(y - k2) = 4a(x - h) (h + at2, k + 2at)
(y - p2) = 4b(y - q) (p + 2at, q + at2)

Here, the given parabola is y2 = 4ax

So, its parametric coordinate is (at², 2at)

We can check it by putting the above point in the equation of parabole 

L.H.S = y2

⇒ (2at)2

⇒ 4a2t2     -----(i)

R.H.S = 4ax

⇒ 4 × a × at2

⇒ 4a2t2     -----(ii)

From (i) and (ii), we get 

∴ (at², 2at) is the parametric coordinates of the parabola y = 4ax.

More Parabola, Ellipse and Hyperbola Questions

Get Free Access Now
Hot Links: teen patti wealth teen patti circle teen patti flush teen patti gold downloadable content teen patti rich