The distance between the parallel planes 3x + y + 3z = 8 and 9x + 3y + 9z = 15 is:

  1. \(\frac{5}{{\sqrt 19}}\)
  2. \(\frac{7}{{\sqrt 19}}\)
  3. \(\frac{3}{{\sqrt 19}}\)
  4. \(\frac{9}{{\sqrt 19}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{3}{{\sqrt 19}}\)
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
6 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

Concept:

Distance between two parallel plane ax + by + cz + d1 = 0 and ax + by + cz + d2 = 0 is \(\rm |\frac{d_1-d_2}{\sqrt{a^2+b^2+c^2}}|\)

 

Calculation:

Here, 3x + y + 3z = 8 and 9x + 3y + 9z = 15

Divide 9x + 3y + 9z = 15 by 3 we get 

3x + y + 3z = 5

Now, distance between 3x + y + 3z = 8 and 3x + y + 3z = 5 

\(\rm= |\frac{8-5}{\sqrt{3^2+1^2+3^2}}|\\ =\frac{3}{\sqrt{19}}\)

Hence, option (3) is correct.

Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

Get Free Access Now
Hot Links: teen patti rummy lotus teen patti teen patti gold apk