Question
Download Solution PDFजैसा कि चित्र में दिखाया गया है, आनमन दृढ़ता EI के साथ किरण पुंज में संचित और भारित विकृति ऊर्जा कितनी है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
Strain energy due to bending moment is given by:
\(U=\smallint \frac{{{M^2}dx}}{{2EI}}\)
The reaction at both ends will be:
RA = RB = P (due to symmetricity)
Calculation:
Given:
The bending moment diagram of the beam is:
For section AB and CD bending will be variable and equal i.e. M = px
\({U_{AB}} = {U_{CD}} = \smallint \frac{{{M^2}dx}}{{2EI}} = \mathop \smallint \limits_0^L \frac{{{{\left( {Px} \right)}^2}dx}}{{2EI}}\)
And for section BC bending moment is constant i.e. M = PL
\({U_{BC}} = \smallint \frac{{{M^2}dx}}{{2EI}} = \mathop \smallint \limits_0^{2L} \frac{{{{\left( {PL} \right)}^2}dx}}{{2EI}}\)
Total strain energy stored is:
U = UAB + UBC + UCD
\(U = 2\mathop \smallint \limits_0^L \frac{{{{\left( {Px} \right)}^2}dx}}{{2EI}} + \mathop \smallint \limits_0^{2L} \frac{{{{\left( {PL} \right)}^2}dx}}{{2EI}}\)
\(U = \frac{{{P^2}}}{{2EI}}\left[ {\left[ {\frac{{2{x^3}}}{3}} \right]_0^L + [{L^2}x]_0^{2L}} \right]\)
\(U = \frac{{{P^2}}}{{2EI}}\left[ {\frac{{2{L^3}}}{3} + 2{L^3}} \right]\)
\(U = \frac{{{P^2}}}{{2EI}} \times \frac{{8{L^3}}}{3} = \frac{{4{P^2}{L^3}}}{{3EI}}\)
Last updated on Jun 21, 2025
-> The Interview for BPSC Assistant Professor (Advt. No. 04/2025 to 28/2025) will be conducted in September 2025.
-> The BPSC Assistant Professor Notification 2025 was released for 1711 vacancies under Speciality (Advt. No.04/2025 to 28/2025).
-> The recruitment is ongoing for 220 vacancies (Advt. No. 01/2024 to 17/2024).
-> The salary under BPSC Assistant Professor Recruitment is approximately Rs 15600-39100 as per Pay Matrix Level 11.
-> The selection is based on the evaluation of academic qualifications & work experience and interview.
-> Prepare for the exam using the BPSC Assistant Professor Previous Year Papers. For mock tests attempt the BPSC Assistant Professor Test Series.