कुछ धनात्मक और भिन्न वास्तविक संख्याओं x, y और z के लिए, यदि का समांतर माध्य है, तो हमेशा सत्य रहने वाला संबंध है:

  1. x, y और z समांतर श्रेणी में हैं
  2. √x, √y और √z समांतर श्रेणी में हैं
  3. y, x और z समांतर श्रेणी में हैं
  4. √x, √z और √y समांतर श्रेणी में हैं

Answer (Detailed Solution Below)

Option 3 : y, x और z समांतर श्रेणी में हैं

Detailed Solution

Download Solution PDF

सबसे पहला कदम जो हम यहां करना चाहेंगे वह है हर में से मूल पद को हटाना, इसलिए अंश और हर दोनों को गुणा करने पर

अब दिए गए प्रश्न के अनुसार बनने वाला समीकरण होगा:

अब हर को गुणनखंडित करने पर

अब विकल्पों पर चलते हैं और हम d को AP का सार्व अंतर मान रहे हैं

यदि x, y, z,  AP (समांतर श्रेणी) में है। तब, x - z = 2d, x - y = d, y - z = d

इसे हमारे समीकरण में रखने पर हमें 3 + 3 = 6 मिलता है जिसके बारे में हम नहीं जानते हैं।

यदि y, x, z, AP (समांतर श्रेणी) में है। तब, x - z = d, x - y = -d, y - z = 2d

तो

⇒ (√x - √z) - (√x - √y) = (√y - √z)

इसलिए, y , x, zAP (समांतर श्रेणी) में है।

More Arithmetic Progressions Questions

More Sequences and Series Questions

Hot Links: teen patti master online teen patti master apk best teen patti sweet teen patti palace