बिंदु P के समुच्चय का समीकरण इस प्रकार ज्ञात कीजिए कि PA2 + PB2 = 2n2, जहाँ A और B क्रमशः बिंदु (3, 4, 5) और (-1, 3, -7) हों?

This question was previously asked in
AAI ATC Junior Executive 25 March 2021 Official Paper (Shift 3)
View all AAI JE ATC Papers >
  1. x2 + 2y2 + 4z2 - 4x - 14y + 4z = 2n2 - 109
  2. 2x2 + 2y2 + 2z2 - 4x - 14y + 4z = 2n2 - 109
  3. 2x2 + y2 + z2 - 4x - 14y + 4z = 2n2 - 109
  4. 2x2 + y2 + 2z2 - 4x - 14y + 2z = 2n2 - 109

Answer (Detailed Solution Below)

Option 2 : 2x2 + 2y2 + 2z2 - 4x - 14y + 4z = 2n2 - 109
Free
AAI ATC JE Physics Mock Test
15 Qs. 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

दिया गया है:​

A(3, 4, 5) और B(-1, 3, -7) दो बिंदु हैं।

प्रयुक्त सूत्र:

दूरी सूत्र

गणना:

मान लीजिए कि बिंदु P के निर्देशांक (x, y, z) हैं 

हमें बिंदु P(x, y, z) के समुच्चय का समीकरण इस प्रकार ज्ञात करना है कि PA2 + PB2 = 2n2   ------

समीकरण (1)

(PA)2 की गणना करने पर

P(x, y, z) और A(3, 4, 5)

यहाँ, x1 = x, y1 = y, z1 = z, x2 = 3, y2 = 4, z2 = 5

⇒ PA = 

दोनों तरफ वर्ग करने पर,

⇒ (PA)2 = 

⇒ (PA)2 = (3 - x)2 + (4 - y)2 + (5 - z)2

⇒ (PA)2 = 9 + x2 - 6x + 16 + y2 - 8y + 25 + z2 - 10z 

⇒ (PA)2 = x2 + y2 + z2 - 6x - 8y - 10z + 50

(PB)की गणना करने पर

P(x, y, z) और B(-1, 3, -7)

यहाँ, x1 = x, y1 = y, z1 = z, x2 = -1, y2 = 3, z2 = -7

⇒ PB = 

दोनों तरफ वर्ग करने पर,

⇒ (PB)2 = 

⇒ (PB)2 = (-1 - x)2 + (3 - y)2 + (- 7 - z)2

⇒ (PB)2 = 1 + x2 + 2x + 9 + y2 - 6y + 49 + z2 + 14z

⇒ (PB)2 = x2 + y2 + z2 + 2x - 6y + 14z + 59

समीकरण (1) में (PA)2 और (PB)2 का मान रखने पर,

⇒ (PA)2 + (PB)2 = 2n2

⇒ (x2 + y2 + z2 - 6x - 8y - 10z + 50) + (x2 + y2 + z2 + 2x - 6y + 14z + 59) = 2n2  

⇒ 2x2 + 2y2 + 2z2 - 4x - 14y + 4z + 50 + 59 = 2n2

⇒ 2x2 + 2y2 + 2z2 - 4x - 14y + 4z  = 2n2 - 109

∴ बिंदु P के समुच्चय का समीकरण 2x2 + 2y2 + 2z2 - 4x - 14y + 4z  = 2n2 - 109 है

Latest AAI JE ATC Updates

Last updated on Jul 4, 2025

-> AAI Junior Executive city intimation slip 2025 has been released at the official website. 

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More General Equation of Conics Questions

More Parabola, Ellipse and Hyperbola Questions

Hot Links: teen patti classic teen patti gold downloadable content teen patti go