For the function \(\rm f(x)=\sin x+3x-\frac{2}{\pi}(x^2+x)\) where x ∈ \(\rm \left[0, \frac{\pi}{2}\right]\) consider the following two statements : 

(I) f is increasing in \(\rm \left(0,\frac{\pi}{2}\right)\)

(II) f' is decreasing in \(\rm \left(0,\frac{\pi}{2}\right)\)

Between the above two statements, 

  1. only (I) is true. 
  2. only (II) is true. 
  3. neither (I) nor (II) is true. 
  4. both (I) and (II) are true. 

Answer (Detailed Solution Below)

Option 1 : only (I) is true. 

Detailed Solution

Download Solution PDF

Calculation:

Given, \(f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right)\) \(x \in\left[0, \frac{\pi}{2}\right]\)

⇒ \(f^{\prime}(x)=\cos x+3-\frac{2}{\pi}(2 x+1)>0 \quad f(x) \uparrow\)

⇒ \(f^{\prime}(x)=-\sin x+0-\frac{\pi}{2}(2)\)

\(-\sin x-\frac{4}{\pi}<0\ {f}^{\prime}({x}) \downarrow\)

\(0<{x}<\frac{\pi}{2}\)

⇒ \(-\frac{2}{\pi}(\underset{+1}{0}<\underset{+1}{2 x}<\underset{+1}{\pi})\) 

qImage669e209bd9d2078827f1a0ec

∴ f is increasing in \(\rm \left(0,\frac{\pi}{2}\right)\).

The correct answer is Option 1.

Get Free Access Now
Hot Links: rummy teen patti teen patti star teen patti teen patti rummy 51 bonus teen patti flush