Find the area of the curve y = 4x3 between the end points x = [-2, 3]

  1. 97
  2. 65
  3. 70
  4. 77

Answer (Detailed Solution Below)

Option 1 : 97
Free
All India Agniveer Army GD: Ultimate Live Test - 04
29.5 K Users
50 Questions 100 Marks 60 Mins

Detailed Solution

Download Solution PDF

Concept:

The area of the curve y = f(x) is given by:

A = \(\rm \int_{x_1}^{x_2}f(x) dx\)

where x1 and x2 are the endpoints between which the area is required.

Imp. Note: The net area will be the addition of the area below the x-axis and the area above the x-axis.

Calculation:

The f(x) = y = 4x3

Given the end points x1 = -2, x2 = 3

Area of the curve (A) = \(\rm \left|\int_{-2}^3 4x^3dx\right|\)

⇒ A = \(\rm \left|\int_{-2}^0 4x^3dx\right| + \left|\int_0^3 4x^3dx\right|\)

⇒ A = \(\rm \left|4\left[x^4\over4\right]_{-2}^0\right| + \left|4\left[x^4\over4\right]_0^3\right|\)

⇒ A = \(\rm \left|\left[0- 2^4\right]\right| + \left|\left[3^4 - 0\right]\right| \)

⇒ A = \(\rm \left|-16\right| + \left|81\right|\)

⇒ A = 97

Additional Information

Integral property:

  • ∫ xn dx = \(\rm x^{n+1}\over n+1\)+ C ; n ≠ -1
  • \(\rm∫ {1\over x} dx = \ln x\) + C
  • ∫ edx = ex+ C
  • ∫ adx = (ax/ln a) + C ; a > 0,  a ≠ 1
  • ∫ sin x dx = - cos x + C
  • ∫ cos x dx = sin x + C 
Latest Indian Coast Guard Navik GD Updates

Last updated on Jul 4, 2025

-> The Indian Coast Guard Navik GD Application Correction Window is open now. Candidates can make the changes in the Application Forms through the link provided on the official website of the Indian Navy.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

Get Free Access Now
Hot Links: teen patti gold download teen patti real teen patti master 2025 teen patti classic teen patti wink