Question
Download Solution PDF\(\displaystyle\lim_{x\rightarrow 0} \dfrac{a^x-b^x}{e^x-1}\) is equal to :
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFCONCEPT:
- \(\mathop {\lim }\limits_{x\; \to \;0} \left[ {\frac{{{a^x}\; - \;1}}{x}} \right] = \log a,\;a > 0\)
- \(\mathop {\lim }\limits_{x\; \to \;0} \left[ {\frac{{{e^x} - 1}}{x}} \right] = 1\)
- \(\mathop {\lim }\limits_{x\; \to \;a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{\mathop {\lim }\limits_{x\; \to \;a} f\left( x \right)}}{{\mathop {\lim }\limits_{x\; \to \;a} g\left( x \right)}},\;provided\;\mathop {\lim }\limits_{x\; \to a} g\left( x \right) \ne 0\)
CALCULATION:
Here, we have to find the limit of \(\displaystyle\lim_{x\rightarrow 0} \dfrac{a^x-b^x}{e^x-1}\)
The expression \(\frac{{{a^x} - {b^x}}}{{{e^x} - 1}}\) can be re-written as:
\(\Rightarrow \frac{{{a^x} - {b^x}}}{{{e^x} - 1}} = \left[ {\frac{{\frac{{{a^x} - 1}}{x} - \frac{{{b^x} - 1}}{x}}}{{\frac{{{e^x} - 1}}{x}}}} \right] \)
Now by applying limits on both the sides of the above equation we get
\(\Rightarrow \mathop {\lim }\limits_{x \to 0} \frac{{{a^x} - {b^x}}}{{{e^x} - 1}} = \;\mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\frac{{{a^x} - 1}}{x} - \frac{{{b^x} - 1}}{x}}}{{\frac{{{e^x} - 1}}{x}}}} \right] \)
As we know that, \(\mathop {\lim }\limits_{x\; \to \;a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{\mathop {\lim }\limits_{x\; \to \;a} f\left( x \right)}}{{\mathop {\lim }\limits_{x\; \to \;a} g\left( x \right)}},\;provided\;\mathop {\lim }\limits_{x\; \to a} g\left( x \right) \ne 0\)
\(\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\frac{{{a^x} - 1}}{x} - \frac{{{b^x} - 1}}{x}}}{{\frac{{{e^x} - 1}}{x}}}} \right] = \frac{{\left[ {\mathop {\lim }\limits_{x \to 0} \frac{{{a^x} - 1}}{x}} \right] - \left[ {\mathop {\lim }\limits_{x \to 0} \frac{{{b^x} - 1}}{x}} \right]}}{{\left[ {\mathop {\lim }\limits_{x \to } \frac{{{e^x} - 1}}{x}} \right]}}\)
As we know that, \(\mathop {\lim }\limits_{x\; \to \;0} \left[ {\frac{{{a^x}\; - \;1}}{x}} \right] = \log a,\;a > 0\) and \(\mathop {\lim }\limits_{x\; \to \;0} \left[ {\frac{{{e^x} - 1}}{x}} \right] = 1\)
\(\Rightarrow \mathop {\lim }\limits_{x \to 0} \frac{{{a^x} - {b^x}}}{{{e^x} - 1}} = \log \frac{a}{b}\)
Hence, option A is true.
Last updated on Jul 17, 2025
-> RPSC 2nd Grade Senior Teacher Exam 2025 Notification has been released on 17th July 2025
-> 6500 vacancies for the post of RPSC Senior Teacher 2nd Grade has been announced.
-> RPSC 2nd Grade Senior Teacher Exam 2025 applications can be submitted online between 19th August and 17th September 2025
-> The Exam dates are yet to be announced.