Elementary Properties and Identities MCQ Quiz in मल्याळम - Objective Question with Answer for Elementary Properties and Identities - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 10, 2025

നേടുക Elementary Properties and Identities ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Elementary Properties and Identities MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Elementary Properties and Identities MCQ Objective Questions

Top Elementary Properties and Identities MCQ Objective Questions

Elementary Properties and Identities Question 1:

  1. 71/125
  2. 74/125
  3. 3/5
  4. 1/2

Answer (Detailed Solution Below)

Option 1 : 71/125

Elementary Properties and Identities Question 1 Detailed Solution

Concept - Use trigonometric identities.

Solution -   Let 

  

Now 

so use the formula - 

Elementary Properties and Identities Question 2:

If x takes a non-positive permissible value, then sin-1 x will be-

  1. cos-1 

Answer (Detailed Solution Below)

Option 2 :

Elementary Properties and Identities Question 2 Detailed Solution

Calculation:

Let sin-1 x = y. Then x = sin y

Since,  

therefore   and so 

We have,

cos y = 

  for        ....(i)

Now,       [From (i)]       

Elementary Properties and Identities Question 3:

If tan-1 a + tan-1 b = π/4, ab

  1. 2
  2. 1
  3. 0
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 1

Elementary Properties and Identities Question 3 Detailed Solution

Concept:

Calculation:

Given: tan-1 a + tan-1 b = π/4

As we know that, 

⇒ tan-1 [a + b / 1 - ab] = π/4

⇒ [a + b / 1 - ab] = tan (π/4) = 1

⇒ a + b = 1 - ab

⇒ a + b + ab = 1

Elementary Properties and Identities Question 4:

Find the value of x for the equation 2 tan-1 (cos x) = tan-1 (2 cosec x) ?

  1. π/4
  2. 0
  3. Both 1 and 2
  4. None of these

Answer (Detailed Solution Below)

Option 1 : π/4

Elementary Properties and Identities Question 4 Detailed Solution

Concept:

2 tan-1 x = tan-1 (2x / 1- x2), - 1 ≤ x ≤ 1

Calculation:

Given: 2 tan-1 (cos x) = tan-1 (2 cosec x)

As we know that, 2 tan-1 x = tan-1 (2x / 1- x2), - 1 ≤ x ≤ 1

⇒ 2 tan-1 (cos x) = tan-1 (2 cos x / 1 - cos2 x)

As we know that, sin2 x + cos2 x = 1

⇒ 2 tan-1 (cos x) = tan-1 (2 cos x / sin2 x)

⇒ tan-1 (2 cos x / sin2 x) = tan-1 (2 cosec x) = tan-1 (2 / sin x)

⇒ 2 cos x / sin2 x = 2 / sin x

⇒ cos x sin x - sin2 x = 0

⇒ sin x (cos x - sin x) = 0

⇒ sin x = 0 or cos x - sin x = 0

⇒ x = 0 or π/4

As we can see that for x = 0 the given equation does not exist

Hence, x = π/4 is the only solution for the given equation.

Elementary Properties and Identities Question 5:

If  then x is

  1. 0

Answer (Detailed Solution Below)

Option 2 :

Elementary Properties and Identities Question 5 Detailed Solution

Concept -

Use trigonometric identities

 

Solution -

The given question is also written in the form

Now use the identity 

............(i) 

Let 

Now  then 

put the value of A we get 

put this value in equation (i) we get 

Now taking cos of both side we get the value of x

So the final answer is  hence option 2 is correct.

Elementary Properties and Identities Question 6:

If , then what is x equal to?

  1. 0
  2. 1

Answer (Detailed Solution Below)

Option 4 :

Elementary Properties and Identities Question 6 Detailed Solution

Concept:

Calculation:

⇒ 

⇒  

Since 

⇒ x = 

∴ The value of x is 

Elementary Properties and Identities Question 7:

If tan-1 (2x / 1 - x2) + cot-1 (1 - x2 / 2x) = π/3 such that -1

  1. - (2 + √3)
  2. 2 + √3
  3. 2 - √3
  4. None of these

Answer (Detailed Solution Below)

Option 3 : 2 - √3

Elementary Properties and Identities Question 7 Detailed Solution

Concept:

tan-1 (1/x) = cot x, x > 0

tan-1 x + tan-1 y = tan-1 (x + y) / (1 - xy), xy

Calculation

Given: tan-1 (2x / 1 - x2) + cot-1 (1 - x2 / 2x) = π/3 such that -1

As we know that, tan-1 (1/x) = cot x, x > 0

⇒ cot-1 (1 - x2 / 2x) = tan-1 (2x / 1 - x2)

⇒ 2 tan-1 (2x / 1 - x2) = π/3

⇒ tan-1 (2x / 1 - x2) = π/6

⇒ 2x / 1 - x2 = 1/√3

⇒ x2 + 2√3 x - 1 = 0

By comparing the above equation with ax2 + bx + c = 0, we get

⇒ a = 1, b = 2√3 and c = -1

By using the formula x = [-b ± √(b2 - 4ac)] / 2a, we get

⇒ x = 2 - √3 or - (2 + √3)

But as it is given that -1

Hence, x = 2 - √3

Elementary Properties and Identities Question 8:

sin

  1. 1

Answer (Detailed Solution Below)

Option 4 : 1

Elementary Properties and Identities Question 8 Detailed Solution

Calculation: 

Given

We know that  and 

 = 

 = sin(π/2) = 1

∴  = 1

The correct answer is option (4).

Elementary Properties and Identities Question 9:

Find the value of ?

  1. π 

Answer (Detailed Solution Below)

Option 2 : π 

Elementary Properties and Identities Question 9 Detailed Solution

Concept:

Calculation:

Let S = 

S =            [∵ ]

S = 

S = 

S = 

S = π 

Elementary Properties and Identities Question 10:

If , then find the value of x?

  1. 1/5
  2. 1/3
  3. 1/4
  4. 1/2

Answer (Detailed Solution Below)

Option 1 : 1/5

Elementary Properties and Identities Question 10 Detailed Solution

Concept:

If sin θ = x then θ = sin-1 x

sin-1 (sin θ) = θ, ∀ θ ∈ [-π/2, π/2]

sin-1 x + cos-1 x = π / 2, where x ∈ [-1, 1]

Calculation:

Given: 

As we know that, if sin θ = x then θ = sin-1 x

⇒ sin-1 (1/5) + cos-1 x = sin-1 (1)

As we know that, sin π/2 = 1

⇒ sin-1 (1/5) + cos-1 x = sin-1 (sin π/2)

As we know that, sin-1 (sin θ) = θ, ∀ θ ∈ [-π/2, π/2]

⇒ sin-1 (1/5) + cos-1 x = π/2

As we know that, sin-1 x + cos-1 x = π / 2, where x ∈ [-1, 1]

Hence, x = 1/5

Hot Links: lotus teen patti teen patti cash teen patti app teen patti download dhani teen patti