Cube Roots of Unity MCQ Quiz - Objective Question with Answer for Cube Roots of Unity - Download Free PDF

Last updated on Apr 1, 2025

Latest Cube Roots of Unity MCQ Objective Questions

Cube Roots of Unity Question 1:

What is the value of ?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 1 Detailed Solution

Concept :

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2 = 

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculations :

Given that

 

Consider the first part of the given equation

⇒ 

⇒ 

We know that (a  - b)(a + b) = a2 - band i2 = √-1

⇒     

⇒        ----- (1)

Consider the second part of the given equation

⇒ 

⇒          ----- (2)

Using equations (1) and (2) in the given equation, we get

⇒ 

⇒ 

⇒ 

We know that 

⇒ 

The value of  is 0.

Cube Roots of Unity Question 2:

If 1, ω, ω2 are cube roots of unity then the value of Δ = 

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 2 Detailed Solution

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = 

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 3:

If a complex number ω satisfies the equation ω3 =1, then the value of  is

  1. 0
  2. 1

Answer (Detailed Solution Below)

Option 1 : 0

Cube Roots of Unity Question 3 Detailed Solution

Concept:

ω3 = 1 where ω is the cube root of unity.

ω3 - 13 = 0

(ω - 1)(1 + ω + ω2) = 0

∴ ω = 1 and 1 + ω + ω2 = 0

Calculation:

Given:

We know that;

1 + ω + ω2 = 0

      [∵ ω3 = 1]

Cube Roots of Unity Question 4:

If ω is a cube root of unity then the value of  is ___

  1. 1
  2. 9
  3. 0
  4. 6

Answer (Detailed Solution Below)

Option 2 : 9

Cube Roots of Unity Question 4 Detailed Solution

We know that  then

Top Cube Roots of Unity MCQ Objective Questions

If 1, ω, ω2 are cube roots of unity then the value of Δ = 

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 5 Detailed Solution

Download Solution PDF

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = 

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 6:

If ω is a cube root of unity then the value of  is ___

  1. 1
  2. 9
  3. 0
  4. 6

Answer (Detailed Solution Below)

Option 2 : 9

Cube Roots of Unity Question 6 Detailed Solution

We know that  then

Cube Roots of Unity Question 7:

If 1, ω, ω2 are cube roots of unity then the value of Δ = 

  1. 1
  2. 0
  3. ω 
  4. ω2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 7 Detailed Solution

Concept:

The cube roots of unity are 1, ω and ω2 

where,

 

ω3 = 1

1 + ω + ω2 = 0

ω3n = 1

​Calculation:

Given:

Δ = 

on solving determinant we get,

Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)

Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )

Since ω3 = 1, ω3n = 1, ω6n = 1

Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1

Δ = -1 - ωn +ω2n (ω + ω2)

Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1

Δ = -1 - ωn - ω2n 

If n is not a multiple of 3 then:

Δ = -1 - ωn - ω2n  = 0

Cube Roots of Unity Question 8:

If a complex number ω satisfies the equation ω3 =1, then the value of  is

  1. 0
  2. 1

Answer (Detailed Solution Below)

Option 1 : 0

Cube Roots of Unity Question 8 Detailed Solution

Concept:

ω3 = 1 where ω is the cube root of unity.

ω3 - 13 = 0

(ω - 1)(1 + ω + ω2) = 0

∴ ω = 1 and 1 + ω + ω2 = 0

Calculation:

Given:

We know that;

1 + ω + ω2 = 0

      [∵ ω3 = 1]

Cube Roots of Unity Question 9:

What is the value of ?

  1. -1
  2. 0
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 2 : 0

Cube Roots of Unity Question 9 Detailed Solution

Concept :

Cube Roots of unity are 1, ω and ω2

Here, ω =  and ω2 = 

Property of cube roots of unity:

  • ω3 = 1
  • 1 + ω + ω2 = 0
  • ω = 1 / ω 2 and ω2 = 1 / ω
  • ω3n = 1

 

Calculations :

Given that

 

Consider the first part of the given equation

⇒ 

⇒ 

We know that (a  - b)(a + b) = a2 - band i2 = √-1

⇒     

⇒        ----- (1)

Consider the second part of the given equation

⇒ 

⇒          ----- (2)

Using equations (1) and (2) in the given equation, we get

⇒ 

⇒ 

⇒ 

We know that 

⇒ 

The value of  is 0.

Cube Roots of Unity Question 10:

 +  is equal to

  1. 1
  2. 0
  3. 2
  4. -1

Answer (Detailed Solution Below)

Option 4 : -1

Cube Roots of Unity Question 10 Detailed Solution

Concept:

1 + ω + ω2 = 0

ω3 = 1

Calculation: 

We can write the given expression as

⇒ 

⇒ 

⇒ 

⇒ 

⇒ -1

∴ The required value is -1.

Cube Roots of Unity Question 11:

If f(x) and g(x) are two polynomials such that the polynomial P(x) = f(x3) + x g(x3) is divisible by x2 + x + 1, then P(1) is equal to ________.

Answer (Detailed Solution Below) 0

Cube Roots of Unity Question 11 Detailed Solution

Explanation:

Given:

P(x) = ƒ(x3) + xg(x3)...(1)

Roots of x2 + x + 1 are ω and ω2 as ω2 + ω + 1 = 0 

where ω is the cube root of unity

Now P(x) is divisible by x2 + x + 1 ⇒ P(x) = Q(x)(x2 + x + 1)

So P(ω) = P(ω2) = 0 --(2) ---- (Since roots of x2 + x + 1 are ω and ω2)

Now put x = ω and ω2 in equation (1)

P (ω) = f (1) + ω g (1) = 0 …(3) ------(Since ω3 = 1)

P (ω2) = f (1) + ω2 g (1) = 0 …(4)

Subtracting (3) and (4)

ω g (1) - ω2 g (1) = P (ω) - P (ω2)

from (2)

(ω - ω2) g (1) = 0

As ω - ω2 ≠ 0 so  g (1) = 0 -----(5)

Adding (3) and (4)

2 f (1) – g (1) = P(ω) + P(ω2) -----(Since ω2 + ω = -1)

From (2)

g (1) = 2 f (1)

From (5) we get

f (1) = g (1) = 0

Therefore , P (1) = f (1) + g (1)

= 0 + 0

= 0

Cube Roots of Unity Question 12:

 is equal to

Answer (Detailed Solution Below)

Option 2 :

Cube Roots of Unity Question 12 Detailed Solution

Cube Roots of Unity Question 13:

The complex number z = x + iy, which satisfy the equation,  lies on

  1. X – axis

  2. Straight line y = 5

  3. Circle with center at origin

  4. Ellipse with center at origin

Answer (Detailed Solution Below)

Option 1 :

X – axis

Cube Roots of Unity Question 13 Detailed Solution

⇒ y = 0            ⇒ x – axis

Cube Roots of Unity Question 14:

Value of complex function , where , will be.     (n is an integer value)

  1. equal in real and imaginary parts

  2. purely imaginary

  3. real and non-negative

  4. real & imaginary

Answer (Detailed Solution Below)

Option 3 :

real and non-negative

Cube Roots of Unity Question 14 Detailed Solution

f = |cos (2n + 1)π + isin nπ|i

for any n (integer value           cos(2n + 1)π = ±1) and sin nπ = 0

so        f = |±1 + 0|I = 1i

or we can say for multi values  for any values of n, function will always be real & non-negative.

Hot Links: teen patti gold new version teen patti download apk teen patti casino