Complex Variables MCQ Quiz in বাংলা - Objective Question with Answer for Complex Variables - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Jul 2, 2025
Latest Complex Variables MCQ Objective Questions
Complex Variables Question 1:
যদি w= f(z) একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে, তাহলে f(z) হল
Answer (Detailed Solution Below)
Complex Variables Question 1 Detailed Solution
প্রয়োজনীয় ধারণা:-
কনফর্মাল ম্যাপিং হল একটি অপেক্ষক যা জটিল সমতলে সংজ্ঞায়িত করা হয় যেখানে এটি সমতলে একটি প্রদত্ত বক্ররেখা বা বিন্দুকে রূপান্তরিত করে, এবং এটি সেই প্রদত্ত বক্ররেখার প্রতিটি কোণ সংরক্ষণ করে।
ধরা যাক একটি জটিল অপেক্ষক f(z) আছে এবং এটি C-তে প্রতিটি z-এর জন্য সংজ্ঞায়িত করা হয়েছে, এবং w = f(z)। এখানে, এই অপেক্ষক f-কে একটি রূপান্তর বলা হবে এবং এটি z-সমতলে z = x + iy বিন্দুকে w-সমতলে w = u + iv-তে রূপান্তরিত করে।
এখন ধরা যাক এই রূপান্তরটি বক্ররেখাগুলির মধ্যে কোণগুলিকে মাত্রা এবং দিক (ঘড়ির কাঁটার দিকে বা ঘড়ির কাঁটার বিপরীত দিকে) উভয় ক্ষেত্রেই সংরক্ষণ করে, তাহলে এই ধরনের ম্যাপিংকে কনফর্মাল ম্যাপিং বলা হয়।
Key Points
- যখন একটি অপেক্ষক w = f(z) z-সমতলের ডোমেন D থেকে w-সমতলের ডোমেন D’-এর কনফর্মাল রূপান্তরকে উপস্থাপন করে, তখন ফাংশন f(z) ডোমেন D’-এর z-এর একটি বিশ্লেষণী ফাংশন হবে।
- যখন একটি অপেক্ষক f(z) z-সমতলের ডোমেন D-এর z-এর একটি বিশ্লেষণী ফাংশন হয় এবং D ডোমেনের ভিতরে f’(z) ≠ 0 শর্ত পূরণ করে। তখন ম্যাপিং w = f(z) ডোমেন D-এর প্রতিটি বিন্দুতে কনফর্মাল হিসাবে বিবেচিত হতে পারে।
ব্যাখ্যা:-
প্রদত্ত অপেক্ষকটি হল w = f(z)। এই অপেক্ষকটি একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে।
কনফর্মাল ম্যাপিংয়ের জন্য দুটি প্রধান শর্ত রয়েছে, যা নিচে দেওয়া হল।
- যখন একটি অপেক্ষক f(z) z-সমতলের ডোমেন D-এর z-এর একটি বিশ্লেষণী ফাংশন হয় এবং D ডোমেনের ভিতরে f’(z) ≠ 0 শর্ত পূরণ করে। তখন ম্যাপিং w = f(z) ডোমেন D-এর প্রতিটি বিন্দুতে কনফর্মাল হিসাবে বিবেচিত হতে পারে।
- যখন একটি অপেক্ষক w = f(z) z-সমতলের ডোমেন D থেকে w-সমতলের ডোমেন D’-এর কনফর্মাল রূপান্তরকে উপস্থাপন করে, তখন ফাংশন f(z) ডোমেন D’-এর z-এর একটি বিশ্লেষণী ফাংশন হবে।
সুতরাং, এই শর্তাবলী অনুসারে, এটি সিদ্ধান্ত করা যায় যে যখন একটি অপেক্ষক w= f(z) একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে, তখন f(z) D-তে বিশ্লেষণী হয়।
সুতরাং, সঠিক বিকল্প হল 1।
Complex Variables Question 2:
যেকোনো বিন্দুতে f(a)-এর জন্য কশির ইন্টিগ্রাল ফর্মুলা পোলার ফর্মে হল:
Answer (Detailed Solution Below)
Complex Variables Question 2 Detailed Solution
কশির সমাকল সূত্র
যদি একটি জটিল অপেক্ষক f(z) একটি সরল-সংযুক্ত ডোমেইনের মধ্যে একটি বদ্ধ কন্টুর c-এর ভিতরে এবং তার উপর বিশ্লেষণাত্মক হয়, এবং যদি zo C-এর মাঝখানে কোনো বিন্দু হয়, তাহলে z = zo -তে f(z) এর মান দেওয়া আছে:
পোলার ফর্মে:
(z = x + iy) কে (z = reiθ) রূপে রূপান্তরিত করা হয়, যেখানে:
এবং
Top Complex Variables MCQ Objective Questions
যেকোনো বিন্দুতে f(a)-এর জন্য কশির ইন্টিগ্রাল ফর্মুলা পোলার ফর্মে হল:
Answer (Detailed Solution Below)
Complex Variables Question 3 Detailed Solution
Download Solution PDFকশির সমাকল সূত্র
যদি একটি জটিল অপেক্ষক f(z) একটি সরল-সংযুক্ত ডোমেইনের মধ্যে একটি বদ্ধ কন্টুর c-এর ভিতরে এবং তার উপর বিশ্লেষণাত্মক হয়, এবং যদি zo C-এর মাঝখানে কোনো বিন্দু হয়, তাহলে z = zo -তে f(z) এর মান দেওয়া আছে:
পোলার ফর্মে:
(z = x + iy) কে (z = reiθ) রূপে রূপান্তরিত করা হয়, যেখানে:
এবং
Complex Variables Question 4:
যদি w= f(z) একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে, তাহলে f(z) হল
Answer (Detailed Solution Below)
Complex Variables Question 4 Detailed Solution
প্রয়োজনীয় ধারণা:-
কনফর্মাল ম্যাপিং হল একটি অপেক্ষক যা জটিল সমতলে সংজ্ঞায়িত করা হয় যেখানে এটি সমতলে একটি প্রদত্ত বক্ররেখা বা বিন্দুকে রূপান্তরিত করে, এবং এটি সেই প্রদত্ত বক্ররেখার প্রতিটি কোণ সংরক্ষণ করে।
ধরা যাক একটি জটিল অপেক্ষক f(z) আছে এবং এটি C-তে প্রতিটি z-এর জন্য সংজ্ঞায়িত করা হয়েছে, এবং w = f(z)। এখানে, এই অপেক্ষক f-কে একটি রূপান্তর বলা হবে এবং এটি z-সমতলে z = x + iy বিন্দুকে w-সমতলে w = u + iv-তে রূপান্তরিত করে।
এখন ধরা যাক এই রূপান্তরটি বক্ররেখাগুলির মধ্যে কোণগুলিকে মাত্রা এবং দিক (ঘড়ির কাঁটার দিকে বা ঘড়ির কাঁটার বিপরীত দিকে) উভয় ক্ষেত্রেই সংরক্ষণ করে, তাহলে এই ধরনের ম্যাপিংকে কনফর্মাল ম্যাপিং বলা হয়।
Key Points
- যখন একটি অপেক্ষক w = f(z) z-সমতলের ডোমেন D থেকে w-সমতলের ডোমেন D’-এর কনফর্মাল রূপান্তরকে উপস্থাপন করে, তখন ফাংশন f(z) ডোমেন D’-এর z-এর একটি বিশ্লেষণী ফাংশন হবে।
- যখন একটি অপেক্ষক f(z) z-সমতলের ডোমেন D-এর z-এর একটি বিশ্লেষণী ফাংশন হয় এবং D ডোমেনের ভিতরে f’(z) ≠ 0 শর্ত পূরণ করে। তখন ম্যাপিং w = f(z) ডোমেন D-এর প্রতিটি বিন্দুতে কনফর্মাল হিসাবে বিবেচিত হতে পারে।
ব্যাখ্যা:-
প্রদত্ত অপেক্ষকটি হল w = f(z)। এই অপেক্ষকটি একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে।
কনফর্মাল ম্যাপিংয়ের জন্য দুটি প্রধান শর্ত রয়েছে, যা নিচে দেওয়া হল।
- যখন একটি অপেক্ষক f(z) z-সমতলের ডোমেন D-এর z-এর একটি বিশ্লেষণী ফাংশন হয় এবং D ডোমেনের ভিতরে f’(z) ≠ 0 শর্ত পূরণ করে। তখন ম্যাপিং w = f(z) ডোমেন D-এর প্রতিটি বিন্দুতে কনফর্মাল হিসাবে বিবেচিত হতে পারে।
- যখন একটি অপেক্ষক w = f(z) z-সমতলের ডোমেন D থেকে w-সমতলের ডোমেন D’-এর কনফর্মাল রূপান্তরকে উপস্থাপন করে, তখন ফাংশন f(z) ডোমেন D’-এর z-এর একটি বিশ্লেষণী ফাংশন হবে।
সুতরাং, এই শর্তাবলী অনুসারে, এটি সিদ্ধান্ত করা যায় যে যখন একটি অপেক্ষক w= f(z) একটি ডোমেন D-এর কনফর্মাল ম্যাপিংকে উপস্থাপন করে, তখন f(z) D-তে বিশ্লেষণী হয়।
সুতরাং, সঠিক বিকল্প হল 1।
Complex Variables Question 5:
যেকোনো বিন্দুতে f(a)-এর জন্য কশির ইন্টিগ্রাল ফর্মুলা পোলার ফর্মে হল:
Answer (Detailed Solution Below)
Complex Variables Question 5 Detailed Solution
কশির সমাকল সূত্র
যদি একটি জটিল অপেক্ষক f(z) একটি সরল-সংযুক্ত ডোমেইনের মধ্যে একটি বদ্ধ কন্টুর c-এর ভিতরে এবং তার উপর বিশ্লেষণাত্মক হয়, এবং যদি zo C-এর মাঝখানে কোনো বিন্দু হয়, তাহলে z = zo -তে f(z) এর মান দেওয়া আছে:
পোলার ফর্মে:
(z = x + iy) কে (z = reiθ) রূপে রূপান্তরিত করা হয়, যেখানে:
এবং