The expectation value of p2 of a particle in a cubic box of side β„“ having the wave function Ψnxnynz (x, y, z) =\(\rm \left( {\frac{2}{\ell }} \right)^{3/2} sin \frac{2 \pi x}{β„“}sin \frac{3 \pi y}{β„“}sin \frac{2 \pi z}{β„“}\), is

This question was previously asked in
CSIR-UGC (NET) Chemical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. \(\frac{17h^2}{4l^2}\)
  2. \(\frac{7h^2}{4l^2}\)
  3. \(\frac{3h^2}{l^2}\)
  4. \(\frac{13h^2}{4l^2}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{17h^2}{4l^2}\)
Free
Seating Arrangement
3.6 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

The average value of momentum operator:

For a 1D box, The momentum operator is represented by, 

\(\widehat P = - i\hbar \widehat {{d \over {dx}}}\).

Thus, \({\widehat P^2} = \left[ {{{\left( { - i\hbar } \right)}^2}{{\widehat {\left( {{\partial \over {\partial x}}} \right)}}^2}} \right]\) 

For a particle in ID box from 0 to β„“, the wave function is \(\psi = \sqrt {{2 \over β„“}} \sin \left( {{{n\pi x} \over β„“}} \right)\).

For a particle in a 1D box of side length β„“, the average value or expectation value of P2 is

\(\left\langle {{{\widehat P}^2}} \right\rangle = \int\limits_0^β„“ {{\Psi ^*}{{\widehat P}^2}\Psi dx} \)

\( = \int\limits_0^A {{\Psi ^*}\left[ {{{\left( {{{\left( - i\hbar \right)}}{\partial \over {\partial x}}} \right)}^2}} \right]\Psi dx} \)

\( = \int\limits_0^A {{{\left( {\sqrt {{2 \over β„“}} \sin \left( {{{n\pi x} \over β„“}} \right)} \right)}^*}\left[ {{{\left( {{{\left( { - i\hbar } \right)}}{\partial \over {\partial x}}} \right)}^2}} \right]\left( {\sqrt {{2 \over β„“}} \sin \left( {{{n\pi x} \over β„“}} \right)} \right)dx} \)

\( = - {2 \over β„“}{\hbar ^2}{{n\pi } \over β„“}\int\limits_0^β„“{\sin \left( {{{n\pi x} \over β„“}} \right)\left( {{\partial \over {\partial x}}} \right)\cos \left( {{{n\pi x} \over β„“}} \right)dx} \)

\( = {2 \over β„“}{\hbar ^2}{\left( {{{n\pi } \over β„“}} \right)^2}\int\limits_0^β„“{\sin \left( {{{n\pi x} \over β„“}} \right)\sin \left( {{{n\pi x} \over β„“}} \right)dx} \)

\( = {{{\hbar ^2}} \over β„“}{\left( {{{n\pi } \over β„“}} \right)^2}\int\limits_0^β„“{2{{\sin }^2}\left( {{{n\pi x} \over β„“}} \right)dx} \)

\( = {{{\hbar ^2}} \over β„“}{\left( {{{n\pi } \over β„“}} \right)^2}\int\limits_0^β„“ {\left[ {1 - \cos \left( {{{2n\pi x} \over β„“}} \right)} \right]dx} \)

\( = {{{\hbar ^2}} \over β„“}{\left( {{{n\pi } \over β„“}} \right)^2}\left[ {\int\limits_0^β„“ {dx} - \int\limits_0^β„“ {\cos \left( {{{2n\pi x} \over β„“}} \right)dx} } \right]\)

\( = {{{n^2}{\pi ^2}{h^2}} \over {4{\pi ^2}{β„“^3}}}\left[ {β„“ - 0} \right]\)

\( = {{{n^2}{h^2}} \over {4{β„“^2}}}\)

Explanation:

  • For a particle in a 1D-box, the average value or expectation value of P2 is 

\(\left\langle {{{\widehat P}^2}} \right\rangle \)\({{{n^2}{h^2}} \over {4{β„“^2}}}\)

  • The particle having a particular value of energy in the excited state may have several different stationary states or wavefunctions. If so, these states and energy eigenvalues are said to be degenerate.
  • For a particle in a 3D box, with the wave function Ψnxnynz (x, y, z) =\(\rm \left( {\frac{2}{\ell }} \right)^{3/2} sin \frac{2 \pi x}{β„“}sin \frac{3 \pi y}{β„“}sin \frac{2 \pi z}{β„“}\), the value of nx, ny, and nz are 2,3 and 2 respectively. 
  • Similarly, for a particle in a 3D box with side length β„“, the average value or expectation value of P2 is \(\left\langle {{{\widehat P}^2}} \right\rangle \) 

\(\left( {{n_x}^2 + {n_y}^2 + {n_z}^2} \right){{{h^2}} \over {4{A^2}}} \) 

  • For a particle in a cubic box of side β„“ having the wave function 

​Ψnxnynz (x, y, z) =\(\rm \left( {\frac{2}{\ell }} \right)^{3/2} sin \frac{2 \pi x}{β„“}sin \frac{3 \pi y}{β„“}sin \frac{2 \pi z}{β„“}\),

the value of nx, ny, and nz are 2,3 and 2 respectively.

Conclusion:

Hence, the expectation value of P2 of a particle in a cubic box of side β„“ is

 \(\left( {{2^2} + {3^2} + {2^2}} \right){{{h^2}} \over {4{l^2}}} = {{17{h^2}} \over {4{l^2}}}\)

Latest CSIR NET Updates

Last updated on Jun 23, 2025

-> The last date for CSIR NET Application Form 2025 submission has been extended to 26th June 2025.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Basic Principles of Quantum Mechanics Questions

Get Free Access Now
Hot Links: teen patti gold old version teen patti joy vip teen patti master 51 bonus teen patti master new version teen patti online game