Let y0 > 0, z0 > 0 and α > 1.

Consider the following two differential equations:
\(\begin{aligned} &(*)\left\{\begin{array}{l} \frac{d y}{d t}=y^\alpha \quad \text { for } t>0, \\ y(0)=y_0 \end{array}\right. \\ &(* *)\left\{\begin{array}{l} \frac{d z}{d t}=-z^\alpha \quad \text { for } t>0, \\ z(0)=z_0 \end{array}\right. \end{aligned}\)
We say that the solution to a differential equation exists globally if it exists for all t > 0.

Which of the following statements is true?

This question was previously asked in
CSIR-UGC (NET) Mathematical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. Both (*) and (**) have global solutions

  2. None of (*) and (**) have global solutions
  3. There exists a global solution for (*) and there exists a T < ∞  such that \(\lim _{t \rightarrow T}|z(t)|=+∞\)
  4. There exists a global solution for (**) and there exists a T < ∞ such that \(\lim _{t \rightarrow T}|y(t)|=+∞\)

Answer (Detailed Solution Below)

Option 4 : There exists a global solution for (**) and there exists a T < ∞ such that \(\lim _{t \rightarrow T}|y(t)|=+∞\)
Free
Seating Arrangement
3.9 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Explanation:

 \(\frac{d y}{d t}=y^α\)

\(\Rightarrow \frac{y^{1-α}}{1-α}=t+c\)

and y(0) = y0 ⇒ \(\frac{y_0^{1-α}}{1-α}=c\)

then y1-α = (1 - α)t + y01-α

and If α > 1  1 - α < 0. suppose 1 - α = -a, a > 0

then (1) y-a = -at + y0-a 

⇒ \(y^a=\frac{1}{y_0^{-a}-a t}\)

then for y0-a - at = 0, solution does not exist.

\(\Rightarrow \quad t=\frac{y_o^{-a}}{a}=\frac{1}{a \cdot y_o^a}>o\)

(∵ y0 > 0, a > 0) 

∴ (*) has no global solution

as \(\frac{1}{a \cdot y_0^a}\) ∈ (0, ∞)

options (1) and (3) are false

(* *) \(\frac{d z}{d t}=-z^α\) ⇒ \(\frac{z^{1-α}}{1-α}=-t+c\)

and z0 = z(0)  \(\frac{z_0^{1-α}}{1-α}=c\)

∴ z1-α = -(1 - α)t + z01-α ....(ii)

and for α > 1 ⇒ 1 - α < 0. So, Suppose 1 - α = - b, b > 0

then (ii) ⇒ z-b = bt + zo-b  \(z^b=\frac{1}{b t+z_0^{-b}}\)

and for bt + z0-b​ = 0 solution does not exist 

⇒ \( t=-\frac{z_0^{-b}}{b}=-\frac{1}{z_0^b \cdot b}\) < o

(∵ zo > o, b > 0)

So, ∀ t > 0, solution exist of (* *)

 (**) have global solutions.

option (2) is false.

Also, for T < ∞, take T = \(\frac{1}{a \cdot y_0 a}\)

\(\lim _{t \rightarrow T}|y(t)|=\lim _{t \rightarrow T}\left|\left(\frac{1}{y_0^{-a}-a t}\right)^{1 / a}\right| \)

\(=\lim _{t \rightarrow \frac{1}{a \cdot y_0} a}\left|\left(y_0^{\frac{1}{-a}-a t}\right)^{1 / a}\right|\)

= + ∞ 

 option (4) is true.

Latest CSIR NET Updates

Last updated on Jul 8, 2025

-> The CSIR NET June 2025 Exam Schedule has been released on its official website.The exam will be held on 28th July 2025.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Ordinary Differential Equations Questions

Get Free Access Now
Hot Links: teen patti master plus teen patti royal - 3 patti teen patti wala game teen patti gold old version