उस समूह का चयन कीजिए जिसमें संख्याएँ उसी प्रकार संबंधित हैं जिस प्रकार निम्नलिखित समूहों की संख्याएँ संबंधित हैं।

(नोट: संख्याओं को उनके घटकीय अंकों में तोड़े बिना पूर्ण संख्याओं पर संक्रियाएँ की जानी चाहिए। उदाहरण के लिए 13 - 13 पर संक्रियाएँ जैसे कि 13 को जोड़ना/घटाना/गुणा करना आदि किया जा सकता है। 13 को 1 और 3 में तोड़ना और फिर 1 और 3 पर गणितीय संक्रियाएँ करने की अनुमति नहीं है)

\(\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right], \left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]\)

This question was previously asked in
SSC CGL 2023 Tier-I Official Paper (Held On: 17 Jul 2023 Shift 3)
View all SSC CGL Papers >
  1. \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)
  2. \(\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]\)
  3. \(\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]\)
  4. \(\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)
vigyan-express
Free
PYST 1: SSC CGL - General Awareness (Held On : 20 April 2022 Shift 2)
3.6 Lakh Users
25 Questions 50 Marks 10 Mins

Detailed Solution

Download Solution PDF

तर्क: \(\left[\left(\frac{(1st)Numerator \times 4+ 3}{(1st)Denominator \times 4 + 3 }\right)=\left(\frac{(2nd)Numerator }{(2nd)Denominator}\right)\right]\)

दिया गया :

  • \(\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{7 \times 4+ 3}{9 \times 4 + 3 }\right)=\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{28+ 3}{36 + 3 }\right)=\left(\frac{31}{39}\right)\right]\)

\(\left[\left(\frac{31}{39 }\right)=\left(\frac{31}{39}\right)\right]\) (बायां पक्ष = दायां पक्ष)

30 = 30 (बायां पक्ष = दायां पक्ष)

  • \(\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{3 \times 4+ 3}{5 \times 4 + 3 }\right)=\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{12+ 3}{20 + 3 }\right)=\left(\frac{15}{23}\right)\right]\)

\(\left[\left(\frac{15}{23 }\right)=\left(\frac{15}{23}\right)\right]\) (बायां पक्ष = दायां पक्ष)

इसलिए,

  • विकल्प - (1) : \(\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{11 \times 4+ 3}{13 \times 4 + 3 }\right)=\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{44+ 3}{52 + 3 }\right)=\left(\frac{47}{55}\right)\right]\)

\(\left[\left(\frac{47}{55 }\right)=\left(\frac{47}{55}\right)\right]\) (बायां पक्ष = दायां पक्ष)

  • विकल्प 2) :\(\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{9 \times 4+ 3}{13 \times 4 + 3 }\right)=\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{36+ 3}{52 + 3 }\right)=\left(\frac{37}{55}\right)\right]\)

\(\left[\left(\frac{39}{55 }\right)=\left(\frac{37}{55}\right)\right]\) (बायां पक्ष ≠ दायां पक्ष)

  • विकल्प - (3) : \(\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{9 \times 4+ 3}{11 \times 4 + 3 }\right)=\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{36+ 3}{44 + 3 }\right)=\left(\frac{32}{37}\right)\right]\)

\(\left[\left(\frac{39}{47}\right)=\left(\frac{32}{37}\right)\right]\) (बायां पक्ष ≠ दायां पक्ष)

  • विकल्प - (4) : \(\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{17 \times 4+ 3}{19 \times 4 + 3 }\right)=\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{68+ 3}{76 + 3 }\right)=\left(\frac{36}{77}\right)\right]\)

\(\left[\left(\frac{71}{79}\right)=\left(\frac{36}{77}\right)\right]\) (बायां पक्ष ≠ दायां पक्ष)

अतः, "विकल्प - (1)" सही उत्तर है।

Latest SSC CGL Updates

Last updated on Jun 25, 2025

-> The SSC CGL Notification 2025 has been released on 9th June 2025 on the official website at ssc.gov.in.

-> The SSC CGL exam registration process is now open and will continue till 4th July 2025, so candidates must fill out the SSC CGL Application Form 2025 before the deadline.

-> This year, the Staff Selection Commission (SSC) has announced approximately 14,582 vacancies for various Group B and C posts across government departments.

->  The SSC CGL Tier 1 exam is scheduled to take place from 13th to 30th August 2025.

->  Aspirants should visit ssc.gov.in 2025 regularly for updates and ensure timely submission of the CGL exam form.

-> Candidates can refer to the CGL syllabus for a better understanding of the exam structure and pattern.

-> The CGL Eligibility is a bachelor’s degree in any discipline.

-> Candidates selected through the SSC CGL exam will receive an attractive salary. Learn more about the SSC CGL Salary Structure.

-> Attempt SSC CGL Free English Mock Test and SSC CGL Current Affairs Mock Test.

-> Candidates should also use the SSC CGL previous year papers for a good revision. 

->The UGC NET Exam Analysis 2025 for June 25 is out for Shift 1.

More Letter Based Questions

More Analogy Questions

Get Free Access Now
Hot Links: teen patti gold download teen patti gold new version 2024 teen patti pro teen patti star login master teen patti