Inequalities in one Variable MCQ Quiz in मल्याळम - Objective Question with Answer for Inequalities in one Variable - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 7, 2025

നേടുക Inequalities in one Variable ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Inequalities in one Variable MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Inequalities in one Variable MCQ Objective Questions

Top Inequalities in one Variable MCQ Objective Questions

Inequalities in one Variable Question 1:

Find the solution of the inequality:

  1. (2, 4)
  2. More than one of the above
  3. None of the above

Answer (Detailed Solution Below)

Option 1 :

Inequalities in one Variable Question 1 Detailed Solution

Concept:

Rules for Operations on Inequalities:

  • Adding the same number to each side of an inequality does not change the direction of the inequality symbol.
  • Subtracting the same number from each side of an inequality does not change the direction of the inequality symbol.
  • Multiplying each side of an inequality by a positive number does not change the direction of the inequality symbol.
  • Multiplying each side of an inequality by a negative number reverses the direction of the inequality symbol.
  • Dividing each side of an inequality by a positive number does not change the direction of the inequality symbol.
  • Dividing each side of an inequality by a negative number reverses the direction of the inequality symbol.

Calculation:

Given:

Let us rewrite the given inequality, we get

⇒ 15x

⇒ 15x

⇒ 15x - 16x

⇒ -x

⇒ x > 4

Therefore, we can say that the solution set for the given inequality is .

Inequalities in one Variable Question 2:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 3 :

Inequalities in one Variable Question 2 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ 

∴ The solution set is x ∈   .

Inequalities in one Variable Question 3:

The number of positive integral solutions of the inequation  1 \)

  1. Infinite 
  2. 4
  3. 3
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Inequalities in one Variable Question 3 Detailed Solution

Given:

The inequation: (x + 2)/(x + 3) > 1

Formula used:

For a rational inequality of the form (a/b) > 1, we analyze critical points and test values between intervals.

Calculation:

(x + 2)/(x + 3) > 1

⇒ (x + 2) - (x + 3) > 0

⇒ x + 2 - x - 3 > 0

⇒ -1 > 0

This is not possible.

Since the inequality is never satisfied, there are no positive integral solutions.

∴ The correct answer is option (4).

Inequalities in one Variable Question 4:

The solution set of the inequality 37 − (3x + 5) ≥ 9x − 8(x − 3) is

  1. (−∞, 2)
  2. (−∞, −2) 
  3. (−∞, 2]
  4. (−∞, −2] 

Answer (Detailed Solution Below)

Option 3 : (−∞, 2]

Inequalities in one Variable Question 4 Detailed Solution

Calculation

Given;

Inequality: 37 - (3x + 5) ≥ 9x - 8(x - 3)

⇒ 37 - 3x - 5 ≥ 9x - 8x + 24

⇒ 32 - 3x ≥ x + 24

⇒ 32 - 24 ≥ x + 3x

⇒ 8 ≥ 4x

⇒ 4x ≤ 8

⇒ x ≤ 2

∴ The solution set is (-∞, 2].

Hence option 3 is correct.

Inequalities in one Variable Question 5:

If x satisfies the inequality , then x lies in the interval

Answer (Detailed Solution Below)

Option 1 :

Inequalities in one Variable Question 5 Detailed Solution

Calculation

Given:

⇒ 

⇒ 

⇒  x \geq \frac{11}{-3}\)

⇒   x \geq -\frac{11}{3}\)

⇒ 

∴ x lies in the interval

Hence option 1 is correct

Inequalities in one Variable Question 6:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 3 :

Inequalities in one Variable Question 6 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ 

∴ The solution set is x ∈   .

Inequalities in one Variable Question 7:

If |3x - 5| ≤ 2 then

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 2 :

Inequalities in one Variable Question 7 Detailed Solution

Concept:

If |x| ≤ a then - a ≤ x ≤ a

 

Calculations:

Given , |3x - 5| ≤ 2 

⇒ - 2 ≤ 3x - 5 ≤ 2

⇒ - 2 + 5 ≤ 3x  ≤ 2 + 5 

⇒ 3 ≤ 3x  ≤ 7

 

Hence, if |3x - 5| ≤ 2 then then 

Inequalities in one Variable Question 8:

The solution set of the inequality 17 - (2x + 4) ≤ 9x - 4(2x - 3) is

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 3 :

Inequalities in one Variable Question 8 Detailed Solution

Calculation:

We have, 17 - (2x + 4) ≤ 9x - 4(2x - 3)

⇒ 17 - 2x - 4 ≤ 9x - 8x + 12

⇒ 17 - 4 - 12 ≤ 9x - 8x + 2x

⇒ 1 ≤ 3x

⇒ x ≥ 

∴ The solution set is x ∈   .

Inequalities in one Variable Question 9:

On the number line, the solution of system of inequalities  3x - 7 \\\ 11 - 5x \le 1 \end{matrix} \right.\) is represented

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 2 :

Inequalities in one Variable Question 9 Detailed Solution

Explanation:

Given system of linear inequality is 

3x - 7 \\\ 11 - 5x \le 1 \end{matrix} \right.\)

When 5 + x > 3x - 7 ⇒ 2x

When 11 - 5x ≤ 1 ⇒ 5x ≥ 10 ⇒ x ≥ 2

On the number line, the solution is represented as below.

Inequalities in one Variable Question 10:

If |3x - 5| ≤ 2 then

  1. More than one of the above
  2. None of the above

Answer (Detailed Solution Below)

Option 2 :

Inequalities in one Variable Question 10 Detailed Solution

Concept:

If |x| ≤ a then - a ≤ x ≤ a

 

Calculations:

Given , |3x - 5| ≤ 2 

⇒ - 2 ≤ 3x - 5 ≤ 2

⇒ - 2 + 5 ≤ 3x  ≤ 2 + 5 

⇒ 3 ≤ 3x  ≤ 7

 

Hence, if |3x - 5| ≤ 2 then then 

Hot Links: teen patti master 2025 teen patti master app lotus teen patti teen patti chart