Triangles MCQ Quiz in हिन्दी - Objective Question with Answer for Triangles - मुफ्त [PDF] डाउनलोड करें

Last updated on Jun 14, 2025

पाईये Triangles उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें Triangles MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Triangles MCQ Objective Questions

Triangles Question 1:

ABC एक समबाहु त्रिभुज है और AD, BC पर शीर्षलंब है। यदि A के निर्देशांक (1,2) हैं और D के निर्देशांक (2,6) हैं, तो BC का समीकरण क्या है?

  1. 3x+4y18=0
  2. 4x+3y1=0
  3. 4x3y+26=0

Answer (Detailed Solution Below)

Option 4 :

Triangles Question 1 Detailed Solution

गणना:

दिए गए शीर्ष A(1, 2) और D(−2, 6), जहाँ AD एक समबाहु त्रिभुज ABC में A से BC पर शीर्षलंब है।

AD की ढलान की गणना करें:

क्योंकि AD ⟂ BC, BC की ढाल, , संतुष्ट करती है

रेखा BC का समीकरण

इसलिए, सही उत्तर विकल्प 4 है।

Triangles Question 2:

एक त्रिभुज के शीर्ष A(1, 1),B(0, 0) और C(2, 0) हैं। त्रिभुज के कोण समद्विभाजक P पर मिलते हैं। P के निर्देशांक क्या है?

  1. (1,1/2)

Answer (Detailed Solution Below)

Option 1 :

Triangles Question 2 Detailed Solution

गणना:

दिए गए बिंदु A(1,1), B(0,0), और C(2,0) हैं। कोण समद्विभाजक P (अंतःकेन्द्र) पर मिलते हैं।

भुजा की लंबाई की गणना करें:

इसलिए,

अंतःकेन्द्र सूत्र से,

∴ अंतःकेन्द्र है।

इसलिए, सही उत्तर विकल्प 1 है।

Triangles Question 3:

Comprehension:

निम्न दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
एक मीनार के शीर्ष (M) को तीन बिंदुओं P, Q और R से देखा जाता है जो एक क्षैतिज सीधी रेखा में स्थित हैं जो मीनार के पाद (N) के साथ सीधे गुजरती है। P, Q और R से M के उन्नयन कोण क्रमशः 30°, 45° और 60° हैं।  मान लीजिए PQ = a और QR = b है।

MN किसके बराबर है?

Answer (Detailed Solution Below)

Option 1 :

Triangles Question 3 Detailed Solution

गणना

 

अतः सही उत्तर विकल्प 1 है।

Triangles Question 4:

Comprehension:

निम्न दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
एक मीनार के शीर्ष (M) को तीन बिंदुओं P, Q और R से देखा जाता है जो एक क्षैतिज सीधी रेखा में स्थित हैं जो मीनार के पाद (N) के साथ सीधे गुजरती है। P, Q और R से M के उन्नयन कोण क्रमशः 30°, 45° और 60° हैं।  मान लीजिए PQ = a और QR = b है।

PN किसके बराबर है?

Answer (Detailed Solution Below)

Option 2 :

Triangles Question 4 Detailed Solution

गणना:

उन्नयन कोण हैं:
 

बिंदु P से,; बिंदु Q से, ; और बिंदु R से,

प्रत्येक कोण के लिए स्पर्शज्या सूत्र का उपयोग करने पर:

आकृति से PN = h + a

=

इसलिए, सही उत्तर विकल्प 2 है।

Triangles Question 5:

Comprehension:

नीचे दिए गए (03) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए: एक त्रिभुज ABC की भुजाएँ AB = 3cm, BC = 5cm और CA = 7cm है।

त्रिभुज का क्षेत्रफल क्या है?

  1.  square cm
  2.  square cm
  3.  square cm
  4.  square cm

Answer (Detailed Solution Below)

Option 1 :  square cm

Triangles Question 5 Detailed Solution

गणना:

दिया गया,

त्रिभुज की भुजाएँ हैं: a = 5 cm, c = 3 cm, तथा भुजाओं a और c के बीच कोण B =

त्रिभुज का क्षेत्रफल निम्न सूत्र द्वारा दिया गया है:

हम जानते हैं कि  है, इसलिए:

∴ त्रिभुज का क्षेत्रफल  cm2 है।

अतः सही उत्तर विकल्प 1 है।

Top Triangles MCQ Objective Questions

चतुर्भुज ABCD में, ∠C = 72° और ∠D = 80° है। ∠A और ∠B के समद्विभाजक बिंदु O पर मिलते हैं। ∠AOB की माप कितनी है?

  1. 70° 
  2. 74°
  3. 76°
  4. 78°

Answer (Detailed Solution Below)

Option 3 : 76°

Triangles Question 6 Detailed Solution

Download Solution PDF

विस्तृत विवरण:

जैसा कि हम जानते हैं,

∠A + ∠B + ∠C + ∠D = 360°

⇒ ∠A + ∠B + 72° + 80° = 360°

⇒ ∠A + ∠B = 360° – 152° = 208°

ΔAOB में,

∠A/2 + ∠B/2 + ∠AOB = 180°

⇒ ∠A/2 + ∠B/2 + ∠AOB = 180°

⇒ ∠AOB = 180° - (∠A + ∠B)/2

⇒ ∠AOB = 180° – 208°/2

∴ ∠AOB = 180° – 104° = 76°

Additional Informationसंक्षिप्त विधि:

जैसा कि हम जानते हैं,

2∠AOB = ∠C + ∠D

⇒ 2∠AOB = 72° + 80°

⇒ ∠AOB = 152°/2 = 76°

शीर्ष (3, 13), (5, -8), और (4, -2) वाले त्रिभुज का क्षेत्रफल ज्ञात कीजिए। 

  1.  वर्ग इकाई 
  2. 17 वर्ग इकाई 
  3. 19 वर्ग इकाई 
  4. वर्ग इकाई 

Answer (Detailed Solution Below)

Option 4 : वर्ग इकाई 

Triangles Question 7 Detailed Solution

Download Solution PDF

अवधारणा:

शीर्ष (x1, y1), (x2, y2) और (x3, y3), वाले एक त्रिभुज के क्षेत्रफल को निम्न समीकरण द्वारा ज्ञात किया जाएगा:

क्षेत्रफल = 

 

गणना:

यहाँ, शीर्ष (3, 13), (5, -8), और (4, -2) हैं। 

∴ त्रिभुज का क्षेत्रफल = 

 वर्ग इकाई

अतः विकल्प (4) सही उत्तर है। 

यदि एक समकोण त्रिभुज का लम्ब 8 सेमी है और उसका क्षेत्रफल 20 वर्ग सेमी है, तो आधार की लम्बाई कितनी है?

  1. 20 सेमी
  2. 05 सेमी
  3. 40 सेमी
  4. 08 सेमी

Answer (Detailed Solution Below)

Option 2 : 05 सेमी

Triangles Question 8 Detailed Solution

Download Solution PDF

दिया गया है:

समकोण त्रिभुज का लम्ब = 8 सेमी

क्षेत्रफल = 20 वर्ग सेमी

उपयोग किया गया सूत्र:

समकोण त्रिभुज का क्षेत्रफल = (1/2) × लम्ब × आधार

गणना:

⇒ 20 वर्ग सेमी = (1/2) × 8 × आधार

⇒ आधार = 20/4

⇒ 5 सेमी

∴ आधार की लम्बाई 5 सेमी है।

मान लीजिए θ और ϕ न्यून कोण हैं जैसे कि sin θ  =  और cos ϕ = , तो θ + ϕ का मान है:

Answer (Detailed Solution Below)

Option 2 :

Triangles Question 9 Detailed Solution

Download Solution PDF

हल:

दिया गया है, sin θ = 

⇒ 

और cos ϕ = \(\frac{1}{3}\)

⇒ 

इसलिए 

⇒ 

भुजाओं a = 10 cm, c = 4 cm और कोण B = 30° के साथ त्रिभुज ABC का क्षेत्रफल क्या है?

  1. 16 cm2
  2. 12 cm2
  3. 10 cm2
  4. 8 cm2

Answer (Detailed Solution Below)

Option 3 : 10 cm2

Triangles Question 10 Detailed Solution

Download Solution PDF

अवधारणा:

एक त्रिभुज का क्षेत्रफल = × आधार × ऊंचाई

ΔABC का क्षेत्रफल =

 

गणना:

एक त्रिभुज का क्षेत्रफल = × आधार × ऊंचाई

 × c × a sin∠CBA

 × 10 cm × 4cm sin 30° 

= 5 × 4 ×  (sin 30° = के रूप में)

= 10 cm2

एक त्रिभुज के तीन माध्यिकाओं की लंबाई 9 cm, 12 cm और 15 cm है। फिर त्रिभुज का क्षेत्रफल क्या है?

  1. 24 cm2
  2. 72 cm2
  3. 48 cm2
  4. 144 cm2

Answer (Detailed Solution Below)

Option 2 : 72 cm2

Triangles Question 11 Detailed Solution

Download Solution PDF

संकल्पना:

त्रिभुज का क्षेत्रफल = × (एक भुजा के रूप में माध्यिका द्वारा गठित त्रिभुज का क्षेत्र)

एक त्रिभुज का क्षेत्रफल, जिसकी भुजा लंबाइयाँ a, b और c हैं:

, जहां 's' त्रिभुज का अर्ध-परिमाप है।

त्रिभुज का अर्ध-परिमाप = s =

 

गणना:

दिया हुआ: एक त्रिभुज के तीन माध्यिकाओं की लंबाई 9 cm, 12 cm और 15 cm है

माना कि एक भुजा के रूप में माध्यिका द्वारा गठित त्रिभुज का अर्ध-परिमाप है

∴ s =

अब, एक भुजा के रूप में माध्यिका द्वारा गठित त्रिभुज का क्षेत्रफल = 

जैसा कि हम जानते हैं,

त्रिभुज का क्षेत्र = × (एक भुजा के रूप में माध्यिका द्वारा गठित त्रिभुज का क्षेत्र)

=

कोण के आधार पर त्रिभुज कितने प्रकार के होते हैं?

  1. 2
  2. 10
  3. 9
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Triangles Question 12 Detailed Solution

Download Solution PDF

गणना:

कोण के आधार पर, 3 प्रकार के त्रिकोण हैं

(i) ऑब्सट्यूड एंगल्ड ट्रेलिंग

(ii) तीव्र कोण वाला त्रिभुज

(iii) समकोण त्रिभुज

 कोण के आधार पर त्रिभुज 3 प्रकार के होते हैं

एक वृत्त, एक त्रिभुज के परिगत है जिसकी भुजाएँ 30 सेमी, 40 सेमी और 50 सेमी हैं। वृत्त की परिधि ज्ञात कीजिए।

  1. 75π सेमी
  2. 25π सेमी
  3. 100π सेमी
  4. 50π सेमी

Answer (Detailed Solution Below)

Option 4 : 50π सेमी

Triangles Question 13 Detailed Solution

Download Solution PDF

दिया गया है:

एक वृत्त, एक त्रिभुज के परिगत है जिसकी भुजाएँ 30 सेमी, 40 सेमी और 50 सेमी हैं।

प्रयुक्त अवधारणा:

वृत्त की परिधि = 2πr

गणना:

वर्णित त्रिभुज एक समकोण त्रिभुज (चूँकि    ) है, जिसे पाइथागोरस त्रिक के रूप में भी जाना जाता है।

एक समकोण त्रिभुज में, परित्रिज्या (त्रिभुज के परिगत वृत्त की त्रिज्या) कर्ण की लंबाई की आधी होती है।

चूँकि कर्ण 50 सेमी है, परिधि 50/2 = 25 सेमी है।

परिगत वृत्त की परिधि 2 × π × 25 सेमी = 50π सेमी है।

विकल्प 4 सही उत्तर है।

यदि O एक ΔABC का लम्बकेन्द्र है, ∠BOC = 100° और ∠AOB = 90°, ∠ABC का माप है

  1. 20°
  2. 45°
  3. 10°
  4. 30°

Answer (Detailed Solution Below)

Option 3 : 10°

Triangles Question 14 Detailed Solution

Download Solution PDF

दिया है:

यदि O एक ΔABC का लम्बकेन्द्र है, ∠BOC = 100° और ∠AOB = 90°

परिभाषाएँ:

लम्बकेन्द्र एक त्रिभुज के तीनों शीर्ष-लंबों का प्रतिच्छेद बिंदु होता है

यदि ΔABC में, CE और BD शीर्ष-लंब हैं और वे O पर प्रतिच्छेद करते हैं तब,

∠BOC + ∠BAC = 180

एक बिंदु के चारों ओर सभी कोणों का योग 360° होता है।

गणना:

प्रश्नानुसार,

∠AOB + ∠BOC + ∠AOC = 360° (पूर्ण कोण)

⇒ 90° + 100° + ∠AOC = 360° 

⇒ ∠AOC = 360° - 190° = 170°

अब,  ∠AOC = 180° – ∠ABC

⇒ ∠ABC = 180° – ∠AOC

⇒ ∠ABC = 180° – 170° = 10°

∴ ∠ABC की माप 10° है।

x का वह मान क्या है जिसके लिए बिंदु (x, -1), (2, 1) और (4, 5) संरेखीय हैं?

  1. -1
  2. 2
  3. 1
  4. इनमें से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 1

Triangles Question 15 Detailed Solution

Download Solution PDF

अवधारणा:

यदि तीन बिंदु A = (x1, y1), B = (x2, y2) और C = (x3, y3) संरेखीय हैं तो Δ ABC का क्षेत्रफल शून्य है यानी 

गणना:

दिया हुआ: बिंदु (x, -1), (2, 1) और (4, 5) संरेखीय हैं

माना कि A = (x, - 1), B = (2, 1) और C = (4, 5)

Δ ABC का क्षेत्रफल ज्ञात करें

जैसा कि हम जानते हैं कि,यदि तीन बिंदु A = (x1, y1), B = (x2, y2) और C = (x3, y3) संरेखीय हैं तो Δ ABC का क्षेत्रफल इसके द्वारा दिया जाता है: 

यहाँ x1 = x, y1 = - 1, x2 = 2, y2 = 1, x3 = 4 और y3 = 5

तो Δ ABC का क्षेत्रफल = 

⇒ Δ ABC का क्षेत्रफल = 2 - 2x

∵ बिंदु A, B और C संरेखीय हैं ⇒ ΔABC का क्षेत्रफल = 0

⇒ 2 - 2x = 0

⇒ x = 1

इसलिए, विकल्प C सही उत्तर है।

Hot Links: teen patti 100 bonus teen patti joy 51 bonus teen patti cash game