If \(A = \left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right] = \frac{1}{2} \cdot \left( {P + Q} \right)\) where P is hermitian and Q is skew hermitian matrix P and Q are ?

  1. \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ {\;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{\;4}\\ 4&0 \end{array}} \right]\)
  2. \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ { - \;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{ - \;4}\\ 4&0 \end{array}} \right]\)
  3. \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ {\;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{ - \;4}\\ 4&0 \end{array}} \right]\)
  4. \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ { - \;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{\;4}\\ 4&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ { - \;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{ - \;4}\\ 4&0 \end{array}} \right]\)
Free
UP TGT Arts Full Test 1
7.3 K Users
125 Questions 500 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

Hermitian Matrix:

Any square matrix say A is said to be a hermitian matrix if A = Aθ where Aθ is the transpose of the conjugate matrix of A.

Note: All the diagonal elements of a hermitian matrix is purely real.

Skew hermitian Matrix:

Any square matrix say A is said to be a skew hermitian matrix if A = - Aθ where Aθ is the transpose of the conjugate matrix of A.

Note: All the diagonal elements of a skew hermitian matrix is purely imaginary or zero.

Every square matrix say A can be uniquely expressed as sum of hermitian and skew hermitian matrix as shown below:

\(A = \frac{1}{2} \cdot \left[ {\left( {A + {A^θ }} \right) + \left( {A - {A^θ }} \right)} \right]\) where (A + Aθ) and (A - Aθ) are hermitian and skew hermitian matrices respectively. 

Calculation

Given: \(A = \left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right] = \frac{1}{2} \cdot \left( {P + Q} \right)\) where P is hermitian and Q is skew hermitian matrix

Here we have to find the matrix P and Q

As we know that, any square matrix can be be expressed as sum of hermitian and skew hermitian matrix.

i.e If A is a square matrix then A can be expressed as: \(A = \frac{1}{2} \cdot \left[ {\left( {A + {A^θ }} \right) + \left( {A - {A^θ }} \right)} \right]\) where (A + Aθ) and (A - Aθ) are hermitian and skew hermitian matrices respectively.

By comparing \(A = \left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right] = \frac{1}{2} \cdot \left( {P + Q} \right)\) with \(A = \frac{1}{2} \cdot \left[ {\left( {A + {A^θ }} \right) + \left( {A - {A^θ }} \right)} \right]\) we get
 
\(A = \left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right]\;and\;{A^\theta } = \left[ {\begin{array}{*{20}{c}} 0&{2 + i}\\ { - \;2 - i}&0 \end{array}} \right]\)
 
\(\Rightarrow P = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right] + \;\left[ {\begin{array}{*{20}{c}} 0&{2 + i}\\ { - \;2 - i}&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{2i}\\ { - \;2i}&0 \end{array}} \right]\)
 
Similarly, \(Q = \;\left[ {\begin{array}{*{20}{c}} 0&{ - \;2 + i}\\ {2 - i}&0 \end{array}} \right] - \;\left[ {\begin{array}{*{20}{c}} 0&{2 + i}\\ { - \;2 - i}&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - \;4}\\ 4&0 \end{array}} \right]\)
 
Hence, \(P = \;\left[ {\begin{array}{*{20}{c}} 0&{2i}\\ { - \;2i}&0 \end{array}} \right]\;and\;\left[ {\begin{array}{*{20}{c}} 0&{ - \;4}\\ 4&0 \end{array}} \right]\)
Latest UP TGT Updates

Last updated on Jul 14, 2025

-> The UP TGT Admit Card (2022 cycle) will be released in July 2025

-> The UP TGT Exam for Advt. No. 01/2022 will be held on 21st & 22nd July 2025.

-> The UP TGT Notification (2022) was released for 3539 vacancies.

-> The UP TGT 2025 Notification is expected to be released soon. Over 38000 vacancies are expected to be announced for the recruitment of Teachers in Uttar Pradesh. 

-> Prepare for the exam using UP TGT Previous Year Papers.

More Matrices Questions

Get Free Access Now
Hot Links: teen patti comfun card online teen patti bodhi teen patti game paisa wala