If f(π‘₯) and g(π‘₯) are two probability density functions,

\(\begin{array}{l} f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{x}{a} + 1}&{: - a \le x < 0}\\ { - \frac{x}{a} + 1}&{0 \le x \le a}\\ 0&{otherwise} \end{array}} \right.\\ g\left( x \right) = \left\{ {\begin{array}{*{20}{c}} { - \frac{x}{a}}&{:-a \le x \le 0}\\ {\frac{x}{a}}&{:0 \le x \le a}\\ 0&{:otherewise} \end{array}} \right. \end{array}\)

Which one of the following statements is true?

This question was previously asked in
GATE CE 2016 Official Paper: Shift 2
View all GATE CE Papers >
  1. Mean of f(π‘₯) and g(π‘₯) are same; Variance of f(π‘₯) and g(π‘₯) are same
  2. Mean of f(π‘₯) and g(π‘₯) are same; Variance of f(π‘₯) and g(π‘₯) are different
  3. Mean of f(π‘₯) and g(π‘₯) are different; Variance of f(π‘₯) and g(π‘₯) are same
  4. Mean of f(π‘₯) and g(π‘₯) are different; Variance of f(π‘₯) and g(π‘₯) are different

Answer (Detailed Solution Below)

Option 2 : Mean of f(π‘₯) and g(π‘₯) are same; Variance of f(π‘₯) and g(π‘₯) are different
Free
GATE CE 2023: Full Mock Test
8.5 K Users
65 Questions 100 Marks 180 Mins

Detailed Solution

Download Solution PDF

\(E_1(x)=\int^{\infty}_{-\infty}xf(x)dx\)

\(β‡’ \int^0_{-a}xf(x)dx+\int^a_0af(x)dx\)

\(β‡’ \int^0_{-a}x\left(\frac{x}{a}+1\right)+\int^a_{0}x\left(-\frac{x}{a}+1\right)\)

\(β‡’ \int^0_{-a}\frac{x^2}{a}dx+\int^0_{-a}xds+\int^a_{0}\frac{-x^2}{a}dx+\int^a_{0}xdx\)

⇒ 0

∴ \(\left[\int^0_{-a}\frac{x^2}{a}=-\int^a_0-\frac{x^2}{a}\right]\)

∴ \(\left[\int^0_{-a}xdx=-\int^a_0xdx\right]\)

\(E_2(x)=\int^{\infty}_{-\infty}xg(x)dx\)

⇒ \(\int^0_{-a}x\left(-\frac{x}{a}\right)dx+\int^0_{a}x\left(\frac{x}{a}\right)dx\)

⇒ \(\int^0_{-a}-\frac{x^2}{a}dx+\int^0_a\frac{x^2}{a}dx\)

⇒ 0

∴ \(\left[\int^0_{-a}-\frac{x^2}{a}dx=-\int^0_a\frac{x^2}{a}dx\right]\)

Variance

E(x2) - {E(x)}2

\(E_1(x^2)=\int^{\infty}_{-\infty}x^2f(x)\)

⇒ \(\int^0_{-a}x^2\left(\frac{x}{a}+1\right)dx+\int^a_{0}x^2\left(-\frac{x}{a}+1\right)dx\)

\(\Rightarrow \int^0_{-a}\frac{x^3}{a}dx+\int^0_{-a}x^2dx+\int^a_0-\frac{x^3}{a}dx+\int^a_0x^2dx\)

\(\Rightarrow -\frac{a^3}{4}+\frac{a^3}{3}-\frac{a^3}{4}+\frac{a^3}{3}=\frac{a^3}{6}\)

\(E_2(x^2)=\int^{\infty}_{-\infty}x^2g(x)\)

\(\int^0_{-a}x^2\left(-\frac{x}{a}\right)dx+\int^a_0x^2\left(\frac{x}{a}\right)dx\)

\(\int^0_{-a}\frac{-x^3}{a}dx+\int^a_0\frac{x^3}{a}dx\)

\(\left[-\frac{x^4}{4a}\right]^0_{-a}+\left[\frac{x^4}{4a}\right]^a_{0}\)

\(\left\{0-\left[\frac{-(a)^4}{4a}\right]\right\}+\left\{\frac{a^4}{4a}-0\right\}\)

\(\frac{a^3}{4}+\frac{a^3}{4}=\frac{a^3}{2}\)

Mean of f(x) is E(x):

\(\begin{array}{l} = \mathop \smallint \limits_{ - a}^0 X \left( {\frac{X}{a} + 1} \right)dx + \mathop \smallint \limits_0^a X \left( {\frac{{ - X}}{a} + 1} \right)dx\\ = \left( {\frac{{{X^3}}}{{3a}} + \frac{{{X^2}}}{2}} \right)_{ - a}^0 + \left( {\frac{{ - {X^3}}}{{3a}} + \frac{{{X^3}}}{3}} \right)_0^a = 0\end{array}\)

\(\begin{array}{l} = \mathop \smallint \limits_{ - a}^0 X^2 \left( {\frac{X}{a} + 1} \right)dx + \mathop \smallint \limits_0^a X^2 \left( {\frac{{ - X}}{a} + 1} \right)dx\\ \end {array}\)

\(\left( {\frac{{{X^4}}}{{4a}} + \frac{{{X^3}}}{3}} \right)_{ - a}^0 + \left( {\frac{{ - {X^4}}}{{4a}} + \frac{{{X^3}}}{3}} \right)_0^a = \frac{a^3}{6}\)

⇒ Variance is \(\frac{{{a^3}}}{6}\)

Next, mean of g(x) is E(x)

\(= \mathop \smallint \limits_{-a}^0 x\left( {\frac{{ - x}}{a}} \right)dx + \mathop \smallint \limits_0^a x\times \left( {\frac{X}{a}} \right)dx = 0\)

Variance of g(x) is E(x2) – {E(X)}2, where

\(E\left( {{X^2}} \right) = \mathop \smallint \limits_{ - a}^0 {X^2}\left( {\frac{{ - X}}{a}} \right)dX + \mathop \smallint \limits_0^a {X^2}\left( {\frac{X}{a}} \right)dx = \frac{{{a^3}}}{2}\)

⇒ Variance is \(\frac{{{a^3}}}{2}\)

∴ Mean of f(x) and g(x) are same but variance of f(x) and g(x) are different

Latest GATE CE Updates

Last updated on Jan 8, 2025

-> The GATE CE Admit Card has been released on 7th January 2025. The examination will be conducted on 16th February 2025 in 2 shifts.

> The GATE CE 2025 Notification has been released on the GATE official website. 

-> Candidates with a B.Tech degree in Civil Engineering can appear for the GATE CE exam. 

-> Candidates preparing for the exam can refer to the GATE CE Preparation Tips to increase their chances of selection.

-> Candidates must attempt the GATE CE mock tests. Also, practice with GATE CE Previous Year Papers

More Random Variables Basics Questions

More Probability and Statistics Questions

Get Free Access Now
Hot Links: teen patti lotus teen patti master 2025 teen patti gold new version teen patti gold apk teen patti star login