tan x = \(\sqrt 3\) का सामान्य हल ज्ञात कीजिए। 

  1. nπ + \(\rm \frac {\pi}{3}\), n ∈ Z
  2. nπ - \(\rm \frac {\pi}{3}\), n ∈ Z
  3. nπ + \(\rm \frac {\pi}{6}\), n ∈ Z
  4. nπ ± \(\rm \frac {\pi}{3}\), n ∈ Z

Answer (Detailed Solution Below)

Option 1 : nπ + \(\rm \frac {\pi}{3}\), n ∈ Z
Free
Army Havildar SAC - Quick Quiz
2 K Users
5 Questions 10 Marks 6 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

कुछ मानक त्रिकोणमितीय समीकरणों का सामान्य हल:

समीकरण 

हल 

शर्त 

 sin θ = sin α

 θ = nπ + (-1)n α

 α ∈ [-π/2, π/2] और n ∈ z

 cos θ = cos α

 θ = 2nπ ± α

 α ∈ [0, π] और n ∈ z 

 tan θ = tan α

 θ = nπ + α

 α ∈ (-π/2, π/2) और n ∈ z

 

गणना:

दिया गया है: tan x = \(\sqrt 3\)

⇒ tan x = tan \(\rm \frac {\pi}{3}\)

चूँकि हम जानते हैं, यदि tan θ = tan α है, तो θ = nπ + α है। 

इसलिए, x = nπ + \(\rm \frac {\pi}{3}\) 

अतः tan x = \(\sqrt 3\) का सामान्य हल nπ + \(\rm \frac {\pi}{3}\), n ∈ Z है। 

Latest Army Havildar SAC Updates

Last updated on Jul 1, 2025

-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).

->The Exam will be held on 9th July 2025.

-> Interested candidates had applied online from 13th March to 25th April 2025.

-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.

-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail. 

Get Free Access Now
Hot Links: teen patti gold apk teen patti master apk teen patti game paisa wala