Parabola MCQ Quiz - Objective Question with Answer for Parabola - Download Free PDF

Last updated on Jul 18, 2025

Latest Parabola MCQ Objective Questions

Parabola Question 1:

Let the point \(P\) of the focal chord \(P Q\) of the parabola \(y^{2}=16 x\) be \((1,-4)\). If the focus of the parabola divides the chord PQ in the ratio \(m: n, \operatorname{gcd}(m, n)=1,\). Then \(m^{2}+n^{2}\) is equal to

  1. 10
  2. 37
  3. 17
  4. 26

Answer (Detailed Solution Below)

Option 3 : 17

Parabola Question 1 Detailed Solution

Sol
Given parabola \(\mathrm{y}^{2}=16 \mathrm{x}\)
\(\mathrm{P}=(1,-4)\)
Focus \(\mathrm{S}=(4,0)\)
Since \(\overline{\mathrm{PQ}}\) is focal chord \(\mathrm{t}_{1} \mathrm{t}_{2}=-1\)
\((1,-4)=\left(a t_{1}^{2}, 2 a t_{1}\right)=\left(4 t_{1}^{2}, 8 t_{1}\right),\) but \(a=4 \Rightarrow 8 t_{1}=-4 \Rightarrow t_{1}=\frac{-1}{2}\)
And \(\mathrm{t}_{2}=2\)
\(\mathrm{Q}\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)=(16,16)\)
Ratio \(\mathrm{m}: \mathrm{n}=1-4: 4-16=-3:-12=1: 4\)
\(\mathrm{m}^{2}+\mathrm{n}^{2}=17\)

Parabola Question 2:

A tangent to the parabola y2 = 4x is inclined at an angle 45° deg with the positive direction of x-axis. What is the point of contact of the tangent and the parabola?

  1. (1, 1)
  2. \((2,2\sqrt{2})\)
  3. \((\frac{1}{2},\frac{1}{\sqrt{2}})\)
  4. (1,2)

Answer (Detailed Solution Below)

Option 4 : (1,2)

Parabola Question 2 Detailed Solution

Calculation:

Given the parabola

y2 = 4x 

and a tangent to this parabola that is inclined at an angle of 45°with the positive x-axis, Hence, its slope is 

\(m \;=\; \tan(45^\circ) \;=\; 1.\)

A standard parametric form for y2 = 4x is 

\(\bigl(x(t),\,y(t)\bigr) \;=\;\bigl(t^{2},\,2t\bigr), \)

since  \(y^{2} = 4x \implies (2t)^{2} = 4\,t^{2} \)

The slope of the tangent at \(\bigl(t^{2},\,2t\bigr) \)

Differentiate y2 = 4x 

\(2y\,\frac{dy}{dx} \;=\; 4 \)

\(\;\Longrightarrow\; \frac{dy}{dx} \;=\; \frac{4}{\,2y\,} \;=\; \frac{2}{\,y\,}. \)

At the point \(\bigl(x,y\bigr) = \bigl(t^{2},\,2t\bigr) \) one has \(y = 2t \)

\(\left.\frac{dy}{dx}\right|_{\,(t^{2},\,2t)} \) \(= \frac{2}{\,2t\,} = \frac{1}{t}.\)

We require this slope to equal 1.

\(\frac{1}{t} \;=\; 1 \;\Longrightarrow\; t = 1. \)

Now point of contact

Substitute t = 1 in \(\bigl(x(t),\,y(t)\bigr) = \bigl(t^{2},\,2t\bigr)\)

\(x(1) = 1^{2} = 1, \)

\(y(1) = 2 \cdot 1 = 2. \)

Thus the point of contact of the tangent of slope 1 is (1, 2)

Hence, the correct answer is Option 4.

Parabola Question 3:

Let y = f(x) represent a parabola with focus \(\left(-\frac{1}{2}, 0\right)\) and directrix y = \(-\frac{1}{2}\).

Then 

S = \(\left\{x \in \mathbb{R}: \tan ^{-1}\left(\sqrt{f(x)}+\sin ^{-1}(\sqrt{f(x)+1})\right)=\frac{\pi}{2}\right\}:\)

  1. contains exactly two elements 
  2. contains exactly one element 
  3. is an infinite set
  4. is an empty set 

Answer (Detailed Solution Below)

Option 1 : contains exactly two elements 

Parabola Question 3 Detailed Solution

Calculation: 

\(\rm ​​\left(x+\frac{1}{2}\right)^{2}=\left(y+\frac{1}{4}\right) \)

⇒ y = (x2 + x)

⇒ tan-1\(\rm \sqrt{x(x+1)}\) + sin-1\(\rm \sqrt{x^{2}+x+1}\) = π/2

⇒ 0 ≤ x2 + x + 1 ≤ 1

⇒ \(\rm x^{2}+x \leq 0 \quad \quad ...(1)\)

Also \(\rm x^{2}+x \geq 0 \quad \quad ...(2)\)

∴ x2 + x = 0 ⇒ x = 0, -1 

S contains 2 element. 

Hence, the correct answer is Option 1. 

Parabola Question 4:

If PQ be the focal chord of a parabola y2 = 16x such that P(1, -4)  and \(\frac{P F}{Q F}=\frac{m}{n}\), (F is focus) where m and n are coprime natural numbers, then m+ n2 is 

Answer (Detailed Solution Below) 17

Parabola Question 4 Detailed Solution

Answer (17)

Sol. 

 qImage683029a4f6e688162a8ab85f

y2 = 16x 

⇒ 4a = 16 ⇒ a = 4

Q ≡ \(\left(a t_{2}^{2}, 2 a t_{2}\right)\)

≡ \(\left(4 t_{2}^{2}, 8 t_{2}\right)\)

≡ \(\left(4 t_{1}^{2}, 8 t_{1}\right)\)

\(4 t_{1}^{2}\) = 1, 8t1 = -4 ⇒ t1\(\frac{-1}{2}\)

since P and Q are ends points of focal chord 

t1t2 = 1 ⇒ t2 = 2

⇒ Q = (16,16)

⇒ PF = \(\sqrt{3^{2}+4^{2}}\), FQ = \(\sqrt{12^{2}+16^{2}}\)

⇒ \(\frac{P F}{Q F}=\frac{5}{20}=\frac{1}{4}=\frac{m}{n}\)

⇒ m2 + n2 = 17 

Parabola Question 5:

The radius of the smallest circle which touches the parabolas y = x2 + 2 and x = y2 + 2 is  

  1. \(\frac{7\sqrt{2}}{2} \qquad\)
  2. \(\frac{7\sqrt{2}}{16}\)
  3. \(\frac{7\sqrt{2}}{4} \qquad\)
  4. \(\frac{7\sqrt{2}}{8}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{7\sqrt{2}}{8}\)

Parabola Question 5 Detailed Solution

Calculation: 

The given parabolas are symmetric about the line y = x.
qImage6823285a383f26067761a50e
Tangents at A & B must be parallel to y= x line, so the slope of the tangents = 1  


\(\left( \frac{dy}{dx} \right)_{\min A} = 1 = \left( \frac{dy}{dx} \right)_{\min B}\)

For the Point y = x2 + 2

\(\frac{dy}{dx} = 2x = 1\)

\(x = \tfrac12,\quad y = \bigl(\tfrac12\bigr)^2 + 2 = \tfrac14 + 2 = \tfrac94.\)

Thus, Point B = ( 1/2, 9/4) ⇒ Point A = (9/4, 1/2)

\(AB = \sqrt{(\frac{1}{2} - \frac{9}{4})^2+ (\frac{9}{4} - \frac{1}{2})^2}\)

AB = \(\sqrt{(\frac{2-9}{4})^2+(\frac{9-2}{4})^2}\)

AB = \(\sqrt\frac{98}{4} = \frac{7\sqrt2 }{4}\) 

Radius = AB/2 = \(\frac{7 \sqrt2}{8}\)

Hence, the correct answer is Option 4.

Top Parabola MCQ Objective Questions

The vertex of the parabola (y - 3)2 = 20(x - 1) is:

  1. (-3, -1)
  2. (5, 0)
  3. (1, 3)
  4. (0, 5)

Answer (Detailed Solution Below)

Option 3 : (1, 3)

Parabola Question 6 Detailed Solution

Download Solution PDF

Concept:

Parabola:
Standard Form of the equation: (y - k)2 = 4a(x - h)
Equation of the Axis: y = k
Vertex: (h, k)
Focus: (h + a, k)
Directrix: x = h - a

 

Calculation:

Comparing the given equation (y - 3)2 = 20(x - 1) with the general equation of the parabola (y - k)2 = 4a(x - h), we can say that:

k = 3, a = 5, h = 1.

Vertex is (h, k) = (1, 3).

In the parabola y2 = x, what is the length of the chord passing through the vertex and inclined to the x-axis at an angle θ?

  1. sin θ ⋅ sec2 θ
  2. cos θ . cosec2 θ
  3. cot θ ⋅ sec2 θ
  4. 2 tan θ ⋅ cosec2 θ

Answer (Detailed Solution Below)

Option 2 : cos θ . cosec2 θ

Parabola Question 7 Detailed Solution

Download Solution PDF

Concept:

The coordinates of the point where the chord cut the parabola satisfIes  the equation of a parabola.

Calculation:

 F1 Shraddha Amar 14.01.2022 D6 

Given:

The equation of a parabola is y= x.

The angle made by Chord OA with x-axis is θ

Let the length of the chord OA of the parabola is L 

So, Length of AM = L sinθ 

and Length of OM = L cosθ 

So, The coordinate of A = (L cos θ, L sin θ)

And this point will satisfy the equation of parabola y= x.

⇒ (Lsin θ)= L cos θ

⇒L2 sinθ = L cos θ

⇒ L = cos θ. cosec2 θ

∴ The required length of chord is cos θ. cosec2 θ.

What is the focus of the parabola x2 = 16y ?

  1. (4, 0)
  2. (0, 4)
  3. (0, -4)
  4. (4, 4)

Answer (Detailed Solution Below)

Option 2 : (0, 4)

Parabola Question 8 Detailed Solution

Download Solution PDF

Concept:

Parabola: The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line. (Eccentricity = e =1)

Equation

x2 = 4ay; 

Vertex

(0, 0)

Focus

(0, a)

Equation of the directrix

y = -a

Equation of the axis

x = 0

Length of Latus rectum

4a

Focal distance 

y + a

 

Calculation:

Given: x2 = 16y

⇒ x2 = 4 × 4 × y

Compare with standard equation of parabola x2 = 4ay 

So, a = 4

Therefore, Focus  = (0, a) = (0, 4)

For the parabolas y2 = 4ax and x2 = 4ay 

  1. Vertex are same
  2. Foci are same
  3. Directrix are same
  4. None of the above

Answer (Detailed Solution Below)

Option 1 : Vertex are same

Parabola Question 9 Detailed Solution

Download Solution PDF

Concept:

Parabola: The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line. (Eccentricity = e =1)

Equation

y2 = 4ax

x2 = 4ay

Vertex

(0, 0)

(0, 0)

Focus

(a, 0)

(0, a)

Equation of the directrix

x = -a

y = -a

Equation of the axis

y = 0

x = 0

Equation of Latus rectum

x = a

y = a

Length of Latus rectum

4a

4a

Find the length of the latus rectum of the hyperbola x2 - y2 =  1 ?

  1. 8
  2. 10
  3. 6
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Parabola Question 10 Detailed Solution

Download Solution PDF

CONCEPT:

The properties of a rectangular hyperbola \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) are:

  • Its centre is given by: (0, 0)
  • Its foci are given by: (- ae, 0) and (ae, 0)
  • Its vertices are given by: (- a, 0)  and (a, 0)
  • Its eccentricity is given by: \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)
  • Length of transverse axis = 2a and its equation is y = 0.
  • Length of conjugate axis = 2b and its equation is x = 0.
  • Length of its latus rectum is given by: \(\frac{2b^2}{a}\)

CALCULATION:

Given: Equation of hyperbola is x2 - y2 =  1

As we can see that, the given hyperbola is a horizontal hyperbola.

So, by comparing the given equation of hyperbola with \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) we get

⇒ a = 1 and b = 1

As we know that, length of latus rectum of a hyperbola is given by \(\frac{2b^2}{a}\)

So, the length of latus rectum of given hyperbola is 2 units.

Hence, option D is the correct answer.

What is the focus of the parabola y2 = -12x ?

  1. (3, 0)
  2. (0, 0)
  3. (-3, 0)
  4. (0, -3)

Answer (Detailed Solution Below)

Option 3 : (-3, 0)

Parabola Question 11 Detailed Solution

Download Solution PDF

Concept:

Parabola: The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line. (Eccentricity = e =1)

Equation

y2 = 4ax; 

Vertex

(0, 0)

Focus

(a, 0)

Equation of the directrix

x = -a

Equation of the axis

y = 0

Length of Latus rectum

4a

Focal distance 

x + a

 

Calculation:

Given: y2 = -12x

⇒ y2 = 4 × (-3) × x

Compare with standard equation of parabola y2 = 4ax

So, a = -3

Therefore, Focus  = (a, 0) = (-3, 0)

Focus of the parabola y2 − 8x + 6y + 1 = 0 is

  1. (2, 0)
  2. (1, -3)
  3. (8, 0)
  4. None of the above

Answer (Detailed Solution Below)

Option 2 : (1, -3)

Parabola Question 12 Detailed Solution

Download Solution PDF

Concept:

F2 Aman 29.4.20 Pallavi D1

Latus rectum:

The latus rectum of a conic section is the chord (line segment) that passes through the focus, is perpendicular to the major axis, and has both endpoints on the curve.

  • Length of Latus Rectum of Parabola y2 = 4ax is 4a
  • End points of the latus rectum of a parabola are L = (a, 2a), and L’ = (a, -2a)

 

Calculation:

Given equation:

y2 − 8x + 6y + 1 = 0

⇒ y2 + 6y + 9 - 9 - 8x + 1 = 0

⇒ (y + 3)2 - 8x - 8 = 0

⇒ (y + 3)2 = 8x + 8

⇒ (y + 3)2 = 8 (x + 1)

Let new coordinate axes be X and Y,

Here X = x + 1 and Y = y + 3

⇒ Y2 = 4aX

Now comparing with above equation,

∴ 4a = 8 ⇒ a = 2

Focus: (a, 0)

X = a  and Y = 0

⇒ x + 1 = 2 and y + 3 = 0

⇒ x = 1 and y = -3

∴ focus of parabola is (1, -3)

If parabola y2 = 4kx passes through point (-2, 1), then the length of latus rectum is:

  1. \(\frac 12\)
  2. \(\frac 13\)
  3. \(\frac 14\)
  4. None of these

Answer (Detailed Solution Below)

Option 1 : \(\frac 12\)

Parabola Question 13 Detailed Solution

Download Solution PDF

Concept:

The length of the latus rectum of the parabola y2 = 4ax is 4a.

 

Calculations:

Given, the parabola y2 = 4kx passes through point (-2, 1),

⇒The  point (-2, 1) is satisfying the equation of parabola y2 = 4kx 

⇒ (1)= 4k (-2)

⇒ k = \(\rm \dfrac {-1}8\)

Now, the length of the latus rectum = 4k

⇒The length of latus rectum = 4(\(\rm \frac {-1}8\))

⇒The length of latus rectum = \(\frac {-1}{2}\)

The length of latus rectum can not be negative.

⇒The length of latus rectum = \(\frac {1}{2}\)

Hence, if parabola y2 = 4kx passes through the point (-2, 1), then the length of the latus rectum is \(\frac {1}{2}\).

Find the length of the latus rectum of the parabola y2 = - 12x ?

  1. 8
  2. 12
  3. 10
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 12

Parabola Question 14 Detailed Solution

Download Solution PDF

CONCEPT:

The following are the properties of a parabola of the form: y2 = - 4ax where a > 0

  • Focus is given by (- a, 0)
  • Vertex is given by (0, 0)
  • Equation of directrix is given by: x = a
  • Equation of axis is given by: y = 0
  • Length of latus rectum is given by: 4a
  • Equation of latus rectum is given by: x = - a

CALCULATION:

Given: Equation of parabola is y2 = - 12x

The given equation can be re-written as: y2 = - 4 ⋅ 3 ⋅ x---------(1)

Now by comparing the equation (1), with y2 = - 4ax we get

⇒ a = 3

As we know that, the length of latus rectum of a parabola is given by: 4a

So, length of latus rectum of the given parabola is: 4 ⋅ 3 = 12 units

Hence, option B is the correct answer.

The length of latus rectum of the parabola x2 = 20y ?

  1. 5
  2. 16
  3. 20
  4. 10

Answer (Detailed Solution Below)

Option 3 : 20

Parabola Question 15 Detailed Solution

Download Solution PDF

Concept:

Parabola: The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line. (Eccentricity = e =1)

Equation

x2 = 4ay; 

Vertex

(0, 0)

Focus

(0, a)

Equation of the directrix

y = -a

Equation of the axis

x = 0

Length of Latus rectum

4a

Focal distance 

y + a

 

Calculation:

Given: x2 = 20y

⇒ x2 = 4 × 5 × y

Compare with standard equation of parabola x2 = 4ay 

So, 4a = 4 × 5

Therefore, Length of Latus rectum = 4a = 4 × 5 = 20

Get Free Access Now
Hot Links: teen patti lotus teen patti live teen patti game teen patti casino download